We describe a new strategy for enhancing the efficiency of electrocatalytic CO2 reduction with a homogeneous catalyst, using a room-temperature ionic liquid as both the solvent and electrolyte. The electrochemical behavior of fac-ReCl(2,2'-bipyridine)(CO)3 in neat 1-ethyl-3-methylimidazolium tetracyanoborate ([emim][TCB]) was compared with that in acetonitrile containing 0.1 M [Bu4N][PF6].
View Article and Find Full Text PDFUsing a new technique, which combines pulse radiolysis with nanosecond time-resolved infrared (TRIR) spectroscopy in the condensed phase, we have conducted a detailed kinetic and mechanistic investigation of the formation of a Mn-based CO2 reduction electrocatalyst, [Mn((t)Bu2-bpy)(CO)3]2 ((t)Bu2-bpy = 4,4'-(t)Bu2-2,2'-bipyridine), in acetonitrile. The use of TRIR allowed, for the first time, direct observation of all the intermediates involved in this process. Addition of excess [(n)Bu4N][HCO2] to an acetonitrile solution of fac-MnBr((t)Bu2-bpy)(CO)3 results in its quantitative conversion to the Mn-formate complex, fac-Mn(OCHO)((t)Bu2-bpy)(CO)3, which is a precatalyst for the electrocatalytic reduction of CO2.
View Article and Find Full Text PDF