Publications by authors named "Barbara A Burleigh"

Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the LL5 cell lineage, named NcP1.

View Article and Find Full Text PDF

Trypanosomatids are a diverse group of uniflagellate protozoan parasites that include globally relevant pathogens such as Trypanosoma cruzi, the causative agent of Chagas disease. Trypanosomes lack the fatty acid synthase system typically used for de novo fatty acid (FA) synthesis in other eukaryotes. Instead, these microbes have evolved a modular FA elongase (ELO) system comprised of individual ELO enzymes (ELO1-4) that can operate processively to generate long chain- and very long chain-FAs.

View Article and Find Full Text PDF

The flagellated kinetoplastid protozoan and causative agent of human Chagas disease, Trypanosoma cruzi, inhabits both invertebrate and mammalian hosts over the course of its complex life cycle. In these disparate environments, T. cruzi uses its single flagellum to propel motile life stages and, in some instances, to establish intimate contact with the host.

View Article and Find Full Text PDF

Throughout its complex life cycle, the uniflagellate parasitic protist, Trypanosoma cruzi, adapts to different host environments by transitioning between elongated motile extracellular stages and a nonmotile intracellular amastigote stage that replicates in the cytoplasm of mammalian host cells. Intracellular T. cruzi amastigotes retain a short flagellum that extends beyond the opening of the flagellar pocket with access to the extracellular milieu.

View Article and Find Full Text PDF

The flagellated kinetoplastid protozoan and causative agent of human Chagas disease, , inhabits both invertebrate and mammalian hosts over the course of its complex life cycle. In these disparate environments, uses its single flagellum to propel motile life stages and in some instances, to establish intimate contact with the host. Beyond its role in motility, the functional capabilities of the flagellum have not been defined.

View Article and Find Full Text PDF

In addition to scavenging exogenous cholesterol, the parasitic kinetoplastid can endogenously synthesize sterols. Similar to fungal species, synthesizes ergostane type sterols and is sensitive to a class of azole inhibitors of ergosterol biosynthesis that target the enzyme lanosterol 14α-demethylase (CYP51). In the related kinetoplastid parasite , CYP51 is essential, yet in , the cognate enzyme is dispensable for growth; but not heat resistance.

View Article and Find Full Text PDF

The objective of this study was to provide information on genetic diversity among isolates obtained from different biological sources circulating in endemic areas of Panama. Initial discrete typing units (DTUs) assignment was performed evaluating three single locus molecular markers (mini-exon, heat shock protein 60 and glucose-6-phosphate isomerase genes). Further diversity within TcI lineages was explored using a multi-locus sequence typing approach with six maxicircle genes.

View Article and Find Full Text PDF

Throughout their life cycle, parasitic organisms experience a variety of environmental conditions. To ensure persistence and transmission, some protozoan parasites are capable of adjusting their replication or converting to distinct life cycle stages. Trypanosoma cruzi is a 'generalist' parasite that is competent to infect various insect (triatomine) vectors and mammalian hosts.

View Article and Find Full Text PDF

Chagas' disease arises as a direct consequence of the lytic cycle of Trypanosoma cruzi in the mammalian host. While invasion is well studied for this pathogen, study of egress has been largely neglected. Here, we provide the first description of T.

View Article and Find Full Text PDF

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that has a heterogeneous population composed of a pool of strains with distinct characteristics, including variable levels of virulence. In previous work, transcriptome analyses of parasite genes after infection of human foreskin fibroblasts (HFF) with virulent (CL Brener) and non-virulent (CL-14) clones derived from the CL strain, revealed a reduced expression of genes encoding parasite surface proteins in CL-14 compared to CL Brener during the final steps of the intracellular differentiation from amastigotes to trypomastigotes. Here we analyzed changes in the expression of host genes during in vitro infection of HFF cells with the CL Brener and CL-14 strains by analyzing total RNA extracted from cells at 60 and 96 hours post-infection (hpi) with each strain, as well as from uninfected cells.

View Article and Find Full Text PDF

In its mammalian host, the kinetoplastid protozoan parasite, Trypanosoma cruzi, is obliged to establish intracellular residence in order to replicate. This parasite can infect and replicate within a diverse array of cell and tissue types across many mammalian host species. The establishment of quantitative assays to assess the replicative capacity of intracellular T.

View Article and Find Full Text PDF

The mammalian stages of the parasite , the causative agent of Chagas disease, exhibit a wide host species range and extensive within-host tissue distribution. These features, coupled with the ability of the parasites to persist for the lifetime of the host, suggest an inherent capacity to tolerate changing environments. To examine this potential, we studied proliferation and cell cycle dynamics of intracellular amastigotes experiencing transient metabolic perturbation or drug pressure in the context of an infected mammalian host cell.

View Article and Find Full Text PDF

Intracellular infection and multi-organ colonization by the protozoan parasite, Trypanosoma cruzi, underlie the complex etiology of human Chagas disease. While T. cruzi can establish cytosolic residence in a broad range of mammalian cell types, the molecular mechanisms governing this process remain poorly understood.

View Article and Find Full Text PDF

Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving several morphologically and biochemically distinct stages that establish intricate interactions with various insect and mammalian hosts. It has also a heterogeneous population structure comprising strains with distinct properties such as virulence, sensitivity to drugs, antigenic profile and tissue tropism. We present a comparative transcriptome analysis of two cloned T.

View Article and Find Full Text PDF

Obligate intracellular pathogens satisfy their nutrient requirements by coupling to host metabolic processes, often modulating these pathways to facilitate access to key metabolites. Such metabolic dependencies represent potential targets for pathogen control, but remain largely uncharacterized for the intracellular protozoan parasite and causative agent of Chagas disease, Trypanosoma cruzi. Perturbations in host central carbon and energy metabolism have been reported in mammalian T.

View Article and Find Full Text PDF

Trypanosoma cruzi is the kinetoplastid protozoan parasite that causes human Chagas disease, a chronic disease with complex outcomes including severe cardiomyopathy and sudden death. In mammalian hosts, T. cruzi colonises a wide range of tissues and cell types where it replicates within the host cell cytoplasm.

View Article and Find Full Text PDF

Energy metabolism is an attractive target for the development of new therapeutics against protozoan pathogens, including Trypanosoma cruzi, the causative agent of human Chagas disease. Despite emerging evidence that mitochondrial electron transport is essential for the growth of intracellular T. cruzi amastigotes in mammalian cells, fundamental knowledge of mitochondrial energy metabolism in this parasite life stage remains incomplete.

View Article and Find Full Text PDF

Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts.

View Article and Find Full Text PDF

Protozoan infections are a serious global health problem. Natural killer (NK) cells and cytolytic T lymphocytes (CTLs) eliminate pathogen-infected cells by releasing cytolytic granule contents--granzyme (Gzm) proteases and the pore-forming perforin (PFN)--into the infected cell. However, these cytotoxic molecules do not kill intracellular parasites.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi, causative agent of Chagas disease, displays high intraspecific genetic diversity: six genetic lineages or discrete typing units (DTUs) are currently recognized, termed TcI through TcVI. Each DTU presents a particular distribution pattern across the Americas, and is loosely associated with different transmission cycles and hosts. Several DTUs are known to circulate in Central America.

View Article and Find Full Text PDF

The capacity for rapid localization of epitope-tagged or fluorescent fusion proteins in cells is an important tool for biological discovery and functional analysis. For Trypanosoma cruzi, the protozoan parasite that causes human Chagas disease, visualization of ectopically-expressed proteins in the clinically-relevant mammalian stages is hindered by the necessity to first perform transfection and lengthy selection procedures in the insect vector form of the parasite. Here, we demonstrate the ability to by-pass the insect stage with the delivery of plasmid DNA to non-dividing, tissue culture trypomastigotes such that upon host cell infection, transgenes are expressed and rapidly localized in intracellular T.

View Article and Find Full Text PDF

Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown.

View Article and Find Full Text PDF

Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas' disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T.

View Article and Find Full Text PDF

Mammalian cell invasion by the protozoan parasite Trypanosoma cruzi involves host cell microtubule dynamics. Microtubules support kinesin-dependent anterograde trafficking of host lysosomes to the cell periphery where targeted lysosome exocytosis elicits remodelling of the plasma membrane and parasite invasion. Here, a novel role for microtubule plus-end tracking proteins (+TIPs) in the co-ordination of T.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7c401rra3p5b26bqvusfl3td145jl3dg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once