Publications by authors named "Barba-Spaeth G"

The yellow fever 17D vaccine (YF17D) is highly effective but is frequently administered to individuals with pre-existing cross-reactive immunity, potentially impacting their immune responses. Here, we investigate the impact of pre-existing flavivirus immunity induced by the tick-borne encephalitis virus (TBEV) vaccine on the response to YF17D vaccination in 250 individuals up to 28 days post-vaccination (pv) and 22 individuals sampled one-year pv. Our findings indicate that previous TBEV vaccination does not affect the early IgM-driven neutralizing response to YF17D.

View Article and Find Full Text PDF

All enveloped viruses enter cells by fusing their envelope with a target cell membrane while avoiding premature fusion with membranes of the producer cell-the latter being particularly important for viruses that bud at internal membranes. Flaviviruses bud in the endoplasmic reticulum, are transported through the TGN to reach the external milieu, and enter other cells via receptor-mediated endocytosis. The trigger for membrane fusion is the acidic environment of early endosomes, which has a similar pH to the TGN of the producer cell.

View Article and Find Full Text PDF

Humans display substantial interindividual clinical variability after SARS-CoV-2 infection, the genetic and immunological basis of which has begun to be deciphered. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus.

View Article and Find Full Text PDF

How infection by a viral variant showing antigenic drift impacts a preformed mature human memory B cell (MBC) repertoire remains an open question. Here, we studied the MBC response up to 6 months after SARS-CoV-2 Omicron BA.1 breakthrough infection in individuals previously vaccinated with three doses of the COVID-19 mRNA vaccine.

View Article and Find Full Text PDF

Acute kidney injury is one of the most important complications in patients with COVID-19 and is considered a negative prognostic factor with respect to patient survival. The occurrence of direct infection of the kidney by SARS-CoV-2, and its contribution to the renal deterioration process, remain controversial issues. By studying 32 renal biopsies from patients with COVID-19, we verified that the major pathological feature of COVID-19 is acute tubular injury (ATI).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers examined SARS-CoV-2 naive patients with specific genetic deficiencies and autoantibodies that affect IFN response to see if this impacted vaccine efficacy.
  • * The study found that despite these deficiencies, the B cell response, including memory B cells and IgG production, remained robust and similar to healthy individuals, indicating type I IFN isn't essential for generating a strong vaccine-induced immune response against SARS-CoV-2.
View Article and Find Full Text PDF

Neurological manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection represent a major issue in long coronavirus disease. How SARS-CoV-2 gains access to the brain and how infection leads to neurological symptoms are not clear because the principal means of viral entry by endocytosis, the angiotensin-converting enzyme 2 receptor, are barely detectable in the brain. We report that human neuronal cells, nonpermissive to infection through the endocytic pathway, can be infected when cocultured with permissive infected epithelial cells.

View Article and Find Full Text PDF

The SARS-CoV-2 Omicron variant can escape neutralization by vaccine-elicited and convalescent antibodies. Memory B cells (MBCs) represent another layer of protection against SARS-CoV-2, as they persist after infection and vaccination and improve their affinity. Whether MBCs elicited by mRNA vaccines can recognize the Omicron variant remains unclear.

View Article and Find Full Text PDF

There is an urgent need for better diagnostic and analytical methods for vaccine research and infection control in virology. This has been highlighted by recently emerging viral epidemics and pandemics (Zika, SARS-CoV-2), and recurring viral outbreaks like the yellow fever outbreaks in Angola and the Democratic Republic of Congo (2016) and in Brazil (2016-2018). Current assays to determine neutralising activity against viral infections in sera are costly in time and equipment and suffer from high variability.

View Article and Find Full Text PDF

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue.

View Article and Find Full Text PDF

In addition to serum immunoglobulins, memory B cell (MBC) generation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is another layer of immune protection, but the quality of MBC responses in naive and coronavirus disease 2019 (COVID-19)-recovered individuals after vaccination remains ill defined. We studied longitudinal cohorts of naive and disease-recovered individuals for up to 2 months after SARS-CoV-2 mRNA vaccination. We assessed the quality of the memory response by analysis of antibody repertoires, affinity, and neutralization against variants of concern (VOCs) using unbiased cultures of 2,452 MBCs.

View Article and Find Full Text PDF
Article Synopsis
  • There are viruses carried by bugs that can make people really sick, so scientists need new ways to stop them.
  • This research looks at a special part of the virus called defective viral genomes (DVGs) that can actually help fight off the bad viruses like Zika.
  • The scientists found that some DVGs can really weaken the Zika virus, making it less likely to spread, even in mosquitoes, which can help protect people from getting sick.
View Article and Find Full Text PDF
Article Synopsis
  • Memory B cells are crucial for fighting viruses, but their specific role in SARS-CoV-2 infection has been unclear until now.
  • A study tracked the B cell response in COVID-19 patients for 6 months, finding that early B cell activation led to strong antibody production and ongoing immune response.
  • The research shows that specific memory B cells evolved with somatic mutations over time, indicating a persistent immune activation that could help provide long-term protection against SARS-CoV-2.
View Article and Find Full Text PDF

Objectives: T follicular helper (Tfh) cells are the principal T helper cell subset that provides help to B cells for potent antibody responses against various pathogens. In this study, we took advantage of the live-attenuated yellow fever virus (YFV) vaccine strain, YF-17D, as a model system for studying human antiviral immune responses following exposure to an acute primary virus challenge under safe and highly controlled conditions, to comprehensively analyse the dynamics of circulating Tfh (cTfh) cells.

Methods: We tracked and analysed the response of cTfh and other T and B cell subsets in peripheral blood of healthy volunteers by flow cytometry over the course of 4 weeks after YF-17D vaccination.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding how B cells respond to pathogens is key for creating better vaccines.
  • A study tracked B cell responses to the yellow fever vaccine, revealing that some B cell types persist longer than others.
  • The research indicated ongoing maturation of B cells for several months post-vaccination and highlighted the role of specific antibody clones in neutralizing the virus.
View Article and Find Full Text PDF

A problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly neutralizing, displaying a strong infection enhancing potential. FLE exposure takes place via dynamic 'breathing' of E dimers at the virion surface.

View Article and Find Full Text PDF

Unlabelled: RNA viruses present an extraordinary threat to human health, given their sudden and unpredictable appearance, the potential for rapid spread among the human population, and their ability to evolve resistance to antiviral therapies. The recent emergence of chikungunya virus, Zika virus, and Ebola virus highlights the struggles to contain outbreaks. A significant hurdle is the availability of antivirals to treat the infected or protect at-risk populations.

View Article and Find Full Text PDF

Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern, with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue virus (DENV), a flavivirus closely related to ZIKV.

View Article and Find Full Text PDF

Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation.

View Article and Find Full Text PDF

Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies.

View Article and Find Full Text PDF

Little is known about the three-dimensional organization of rubella virus, which causes a relatively mild measles-like disease in children but leads to serious congenital health problems when contracted in utero. Although rubella virus belongs to the same family as the mosquito-borne alphaviruses, in many respects it is more similar to other aerosol-transmitted human viruses such as the agents of measles and mumps. Although the use of the triple MMR (measles, mumps and rubella) live vaccine has limited its incidence in western countries, congenital rubella syndrome remains an important health problem in the developing world.

View Article and Find Full Text PDF

Influenza A virus (IAV) infection results in a highly contagious respiratory illness leading to substantial morbidity and occasionally death. In this report, we assessed the in vivo physiological contribution of invariant NKT (iNKT) lymphocytes, a subset of lipid-reactive αβ T lymphocytes, on the host response and viral pathogenesis using a virulent, mouse-adapted, IAV H3N2 strain. Upon infection with a lethal dose of IAV, iNKT cells become activated in the lungs and bronchoalveolar space to become rapidly anergic to further restimulation.

View Article and Find Full Text PDF

The live-attenuated yellow fever vaccine (YF17D) is one of the safest and most effective vaccines available today. Here, YF17D was genetically altered to express the circumsporozoite protein (CSP) from the murine malarial parasite Plasmodium yoelii. Reconstituted recombinant virus was viable and exhibited robust CSP expression.

View Article and Find Full Text PDF

Background & Aims: Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma. Current therapy with pegylated interferon alpha (IFN-alpha) in combination with ribavirin is associated with adverse effects and often fails to induce a sustained response. IFN-lambdas, recently discovered IFN gene family members, exhibit antiviral and cell stimulatory activities similar to IFN-alpha.

View Article and Find Full Text PDF