Publications by authors named "Barathan Muttiah"

Background: After two years of the COVID-19 pandemic, Malaysia began the transition to the endemic phase. students at higher education institutes are among those who were affected by the COVID-19 outbreak and deserve further attention. Hence, this study aimed to assess the knowledge, attitude, and practice (KAP) associated with COVID-19 among public university undergraduate students in Malaysia during the endemic phase.

View Article and Find Full Text PDF

Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity.

View Article and Find Full Text PDF
Article Synopsis
  • Phoenixin (PNX) is a neuropeptide that significantly influences metabolism and reproduction, playing a role in energy homeostasis, glucose, lipid metabolism, and mitochondrial function.
  • PNX is primarily found in the hypothalamus and is involved in reproductive hormone regulation, as well as being present in other tissues like the heart and pancreas, indicating its widespread metabolic control.
  • The peptide acts through G protein-coupled receptor 173 (GPR173) and may have therapeutic potential for managing conditions like obesity, type 2 diabetes, and infertility, making further research crucial for developing treatment strategies.
View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders.

View Article and Find Full Text PDF

Platelet-derived extracellular vesicles (pEVs) are emerging as pivotal players in numerous physiological and pathological processes, extending beyond their traditional roles in hemostasis and thrombosis. As one of the most abundant vesicle types in human blood, pEVs transport a diverse array of bioactive molecules, including growth factors, cytokines, and clotting factors, facilitating crucial intercellular communication, immune regulation, and tissue healing. The unique ability of pEVs to traverse tissue barriers and their biocompatibility position them as promising candidates for targeted drug delivery and regenerative medicine applications.

View Article and Find Full Text PDF

Ovarian cancer (OC) remains the deadliest gynecological malignancy, with alarming projections indicating a 42% increase in new cases and a 51% rise in mortality by 2040. This review explores the challenges in OC treatment, focusing on chemoresistance mechanisms and the potential of extracellular vesicles (EVs) as drug delivery agents. Despite advancements in treatment strategies, including cytoreductive surgery, platinum-based chemotherapy, and targeted therapies, the high recurrence rate underscores the need for innovative approaches.

View Article and Find Full Text PDF

Regenerative medicine represents a paradigm shift in healthcare, aiming to restore tissue and organ function through innovative therapeutic strategies. Among these, bioprinting and extracellular vesicles (EVs) have emerged as promising techniques for tissue rejuvenation. EVs are small lipid membrane particles secreted by cells, known for their role as potent mediators of intercellular communication through the exchange of proteins, genetic material, and other biological components.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety.

View Article and Find Full Text PDF

Breast cancer, a multifaceted and heterogeneous disease, poses significant challenges in terms of understanding its intricate resistance mechanisms and devising effective therapeutic strategies. This review provides a comprehensive overview of the intricate landscape of extracellular vesicles (EVs) in the context of breast cancer, highlighting their diverse subtypes, biogenesis, and roles in intercellular communication within the tumour microenvironment (TME). The discussion spans various aspects, from EVs and stromal cells in breast cancer to their influence on angiogenesis, immune response, and chemoresistance.

View Article and Find Full Text PDF

Acute Undifferentiated Febrile Illness (AUFI) presents a clinical challenge, often characterized by sudden fever, non-specific symptoms, and potential life-threatening implications. This review highlights the global prevalence, types, challenges, and implications of AUFI, especially in tropical and subtropical regions where infectious diseases thrive. It delves into the difficulties in diagnosis, prevalence rates, regional variations, and potential causes, ranging from bacterial and viral infections to zoonotic diseases.

View Article and Find Full Text PDF

The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices.

View Article and Find Full Text PDF

This paper sheds light on the alarming issue of antibiotic resistance (ABR) in aquatic environments, exploring its detrimental effects on ecosystems and public health. It examines the multifaceted role of antibiotic use in aquaculture, agricultural runoff, and industrial waste in fostering the development and dissemination of resistant bacteria. The intricate interplay between various environmental factors, horizontal gene transfer, and bacterial extracellular vesicles (BEVs) in accelerating the spread of ABR is comprehensively discussed.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the use of Morinda citrifolia leaf extract to create zinc oxide nanoparticles (ZnO NPs) and zinc oxide/silver nanocomposites (ZnO/Ag NCs), analyzing their structure with advanced techniques like FESEM and XRD.
  • - The antimicrobial effectiveness was tested against various bacterial pathogens, showing that ZnO/Ag NCs had a stronger bactericidal impact than ZnO NPs, particularly at lower concentrations.
  • - ZnO/Ag NCs demonstrated higher toxicity towards lung cancer cells compared to non-cancerous cells, indicating their potential use in developing materials for both antimicrobial and anticancer applications.
View Article and Find Full Text PDF

Polycyclic Aromatic Hydrocarbons (PAHs) profoundly impact public and environmental health. Gaining a comprehensive understanding of their intricate functions, exposure pathways, and potential health implications is imperative to implement remedial strategies and legislation effectively. This review seeks to explore PAH mobility, direct exposure pathways, and cutting-edge bioremediation technologies essential for combating the pervasive contamination of environments by PAHs, thereby expanding our foundational knowledge.

View Article and Find Full Text PDF

Current treatments for stomach cancer are often effective in curing cancer. However, these treatments can also have significant side effects, and they may not be effective in all cases. Hence synthetic compounds exhibit promise as potential agents for cancer treatment.

View Article and Find Full Text PDF

Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways.

View Article and Find Full Text PDF

Objectives: To investigate the potential anti-breast cancer activity of zerumbone in regulating apoptotic mediators and cytokines in comparison with paclitaxel (positive control).

Materials And Methods: In this study, assays such as viability, apoptosis, reactive oxygen species, cell cycle, DNA fragmentation, and cytokines were carried out on MCF-7 cells after treatment with zerumbone and paclitaxel.

Results: The results showed that zerumbone demonstrated a higher (18-fold) IC value (126.

View Article and Find Full Text PDF

The interplay of immune mediators is paramount to optimal host anti-viral immune responses, especially against chronic hepatitis B virus (HBV) infection. Here, we investigated the dynamic changes in host immune responses in chronic HBV-infected individuals with and without liver cirrhosis by examining the signatures of apoptosis and plasma levels of pro-inflammatory cytokines, chemokines, and cytotoxic proteins. A total of 40 chronic HBV patients with and without liver cirrhosis were studied for plasma levels of immune mediators, and signatures of apoptosis in peripheral blood mononuclear cells (PBMCs).

View Article and Find Full Text PDF

() causes melioidosis, a potentially fatal disease for which no licensed vaccine is available thus far. The host-pathogen interactions in infection largely remain the tip of the iceberg. The pathological manifestations are protean ranging from acute to chronic involving one or more visceral organs leading to septic shock, especially in individuals with underlying conditions similar to COVID-19.

View Article and Find Full Text PDF

Background/aim: Isoniazid is an antibiotic used for the treatment of tuberculosis. Previously, we found that the isoniazid derivative (E)-N'-(2,3,4-trihydroxybenzylidene) isonicotinohydrazide (ITHB4) could be developed as novel antimycobacterial agent by lead optimization. We further explored the ability of this compound compared to zerumbone in inhibiting the growth of MCF-7 breast cancer cells.

View Article and Find Full Text PDF

The pathogenesis involving non-alcoholic fatty liver disease (NAFLD) in the context of chronic HBV (CHB) virus infection requires to be understood for developing improved modalities of diagnosis and treatment. We retrospectively investigated the association between NAFLD and CHB virus infection in the context of liver fibrosis. Among the 522 consecutive CHB patients who underwent transient elastography between years 2013 and 2016, we studied 455 subjects in the current investigation.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) represents a challenging global health threat to ~200 million infected individuals. Clinical data suggest that only ~10⁻15% of acutely HCV-infected individuals will achieve spontaneous viral clearance despite exuberant virus-specific immune responses, which is largely attributed to difficulties in recognizing the pathognomonic symptoms during the initial stages of exposure to the virus. Given the paucity of a suitable small animal model, it is also equally challenging to study the early phases of viral establishment.

View Article and Find Full Text PDF

Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood.

View Article and Find Full Text PDF

Background: Mucosal-associated invariant T (MAIT) cells play an important role in innate host defence. MAIT cells appear to undergo exhaustion and are functionally weakened in chronic viral infections. However, their role in chronic hepatitis C virus (HCV) infection remains unclear.

View Article and Find Full Text PDF

The role of T-cell immunosenescence and functional CD8(+) T-cell responses in HIV/TB co-infection is unclear. We examined and correlated surrogate markers of HIV disease progression with immune activation, immunosenescence and differentiation using T-cell pools of HIV/TB co-infected, HIV-infected and healthy controls. Our investigations showed increased plasma viremia and reduced CD4/CD8 T-cell ratio in HIV/TB co-infected subjects relative to HIV-infected, and also a closer association with changes in the expression of CD38, a cyclic ADP ribose hydrolase and CD57, which were consistently expressed on late-senescent CD8(+) T cells.

View Article and Find Full Text PDF