Although primary lung cancer is rare in children, chest CT is commonly performed to assess for lung metastases in children with cancer. Lung nodule computer-aided detection (CAD) systems have been designed and studied primarily using adult training data, and the efficacy of such systems when applied to pediatric patients is poorly understood. The purpose of this study was to evaluate in children the diagnostic performance of traditional and deep learning CAD systems trained with adult data for the detection of lung nodules on chest CT scans and to compare the ability of such systems to generalize to children versus to other adults.
View Article and Find Full Text PDF: Diabetic retinopathy is the leading cause of blindness, affecting over 93 million people. An automated clinical retinal screening process would be highly beneficial and provide a valuable second opinion for doctors worldwide. A computer-aided system to detect and grade the retinal images would enhance the workflow of endocrinologists.
View Article and Find Full Text PDFWe study the performance of a computer-aided detection (CAD) system for lung nodules in computed tomography (CT) as a function of slice thickness. In addition, we propose and compare three different training methodologies for utilizing nonhomogeneous thickness training data (i.e.
View Article and Find Full Text PDF