The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.
View Article and Find Full Text PDFIn soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.
View Article and Find Full Text PDFA high rate upflow anaerobic polyfoam-based bioreactor (UAPB) was developed for lab-scale in-situ biogas upgrading by H injection. The reactor, with a volume of 440 mL, was fed with synthetic wastewater at an organic loading rate (OLR) of 3.5 g COD/L·day and a hydraulic retention time (HRT) of 7.
View Article and Find Full Text PDFBiogas, which typically consists of about 50-70% of methane gas, is produced by anaerobic digestion of organic waste and wastewater. Biogas is considered an important energy resource with much potential; however, its application is low due to its low quality. In this regard, upgrading it to natural gas quality (above 90% methane) will broaden its application.
View Article and Find Full Text PDFBiogas is a sustainable, renewable energy source generated from organic waste degradation during anaerobic digestion (AD). AD is applied for treating different types of wastewater, mostly containing high organic load. However, AD practice is still limited due to the low quality of the produced biogas.
View Article and Find Full Text PDFReverse osmosis (RO) membranes are widely used for desalination and water treatment. However, they insufficiently reject some small uncharged micropollutants, such as certain endocrine-disrupting, pharmaceutically active compounds and boric acid, increasingly present in water sources and wastewater. This study examines the feasibility of improving rejection of multiple micropollutants in commercial low-pressure RO membrane elements using concentration polarization- and surfactant-enhanced surface polymerization.
View Article and Find Full Text PDFThe top polyamide layer of composite reverse osmosis (RO) membranes has a fascinatingly complex structure, yet nanoscale nonuniformities inherently present in polyamide layer may reduce selectivity, e.g., for boron rejection.
View Article and Find Full Text PDF