Publications by authors named "Baran Bayindir"

Non-invasive prenatal testing (NIPT) is a powerful screening method for fetal aneuploidy detection, relying on laboratory and computational analysis of cell-free DNA. Although several published computational NIPT analysis tools are available, no prior comprehensive, head-to-head accuracy comparison of the various tools has been published. Here, we compared the outcome accuracies obtained for clinically validated samples with five commonly used computational NIPT aneuploidy analysis tools (WisecondorX, NIPTeR, NIPTmer, RAPIDR, and GIPseq) across various sequencing depths (coverage) and fetal DNA fractions.

View Article and Find Full Text PDF

Non-invasive prenatal testing (NIPT) is accurate for fetal sex determination in singleton pregnancies, but its accuracy is not well established in twin pregnancies. Here, we present an accurate sex prediction model to discriminate fetal sex in both dichorionic diamniotic (DCDA) and monochorionic diamniotic/monochorionic monoamniotic (MCDA/MCMA) twin pregnancies. A retrospective analysis was performed using a total of 198 twin pregnancies with documented sex.

View Article and Find Full Text PDF

Objective: Non-invasive prenatal detection of aneuploidies can be achieved with high accuracy through sequencing of cell-free maternal plasma DNA in the maternal blood plasma. However, false positive and negative non-invasive prenatal testing (NIPT) results remain. Fetoplacental mosaicism is the main cause for false positive and false negative NIPT.

View Article and Find Full Text PDF
Article Synopsis
  • Noninvasive prenatal testing (NIPT) is a new way to check if a baby might have certain genetic issues by using a blood sample from the mom.
  • Even though NIPT is pretty accurate, there can still be some wrong results, either saying everything is okay when it’s not, or saying there’s a problem when everything is fine.
  • A new method helps figure out why these mistakes happen and has shown excellent results in tests, helping doctors better understand babies' health before they're born.
View Article and Find Full Text PDF

We analyzed by next-generation sequencing (NGS) 67 epilepsy genes in 19 patients with different types of either isolated or syndromic epileptic disorders and in 15 controls to investigate whether a quick and cheap molecular diagnosis could be provided. The average number of nonsynonymous and splice site mutations per subject was similar in the two cohorts indicating that, even with relatively small targeted platforms, finding the disease gene is not an univocal process. Our diagnostic yield was 47% with nine cases in which we identified a very likely causative mutation.

View Article and Find Full Text PDF

We present a patient affected by Dravet syndrome. Thorough analysis of genes that might be involved in the pathogenesis of such phenotype with both conventional and next generation sequencing resulted negative, therefore she was investigated by a-GCH that showed the presence of an unbalanced translocation resulting in a der(4)t(4;8)(p16.3,p23.

View Article and Find Full Text PDF

We report a girl with a de novo distal deletion of 9p affected by idiopathic central precocious puberty and intellectual disability. Genome-wide array-CGH revealed a terminal deletion of about 11 Mb, allowing to define her karyotype as 46; XX, del(9)(p23-pter). To our knowledge, this is the second reported case of precocious puberty associated with 9p distal deletion.

View Article and Find Full Text PDF