Publications by authors named "Barak Z"

The rhizosphere is a complex ecosystem, consisting of a narrow soil zone influenced by plant roots and inhabited by soil-borne microorganisms. Plants actively shape the rhizosphere microbiome through root exudates. Some metabolites are signaling molecules specifically functioning as chemoattractants rather than nutrients.

View Article and Find Full Text PDF
Article Synopsis
  • A new antibody, scFv-SE21, specifically targets a part of misfolded SOD1 that is linked to its harmful behavior, without affecting healthy proteins.
  • In studies using mice, delivering scFv-SE21 via a virus improved neuron health, reduced misfolded SOD1 levels, decreased neuroinflammation, and significantly increased survival rates, highlighting a potential new treatment strategy for ALS.
View Article and Find Full Text PDF

The desert truffle is an ascomycete fungus that forms ect-endomycorrhiza in the roots of plants belonging to Cistaceae. The fungus forms hypogeous edible fruit bodies, appreciated as gourmet food. Truffles and host plants are colonized by various microbes, which may contribute to their development.

View Article and Find Full Text PDF

Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding.

View Article and Find Full Text PDF

Mycorrhizal desert truffles such as , , and , form mycorrhizal associations with plants of the Cistaceae family. These valued truffles are still collected from the wild and not cultivated under intensive farming due to the lack of basic knowledge about their biology at all levels. Recently, several genomes of desert truffles have been decoded, enabling researchers to attempt genetic manipulations to enable cultivation.

View Article and Find Full Text PDF

Despite different phenotypic manifestations, mounting evidence points to similarities in the molecular basis of major neurodegenerative diseases (ND). CNS has evolved to be robust against hazard of ROS, a common perturbation aerobic organisms are confronted with. The trade-off of robustness is system's fragility against rare and unexpected perturbations.

View Article and Find Full Text PDF

The Cu/Zn-superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme's active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses.

View Article and Find Full Text PDF

Desert truffles are mycorrhizal, hypogeous fungi considered a delicacy. On the basis of morphological characters, we identified three desert truffle species that grow in the same habitat in the Negev desert. These include Picoa lefebvrei (Pat.

View Article and Find Full Text PDF

Glyoxylate carboligase (GCL) is a thiamin diphosphate (ThDP)-dependent enzyme, which catalyzes the decarboxylation of glyoxylate and ligation to a second molecule of glyoxylate to form tartronate semialdehyde (TSA). This enzyme is unique among ThDP enzymes in that it lacks a conserved glutamate near the N1' atom of ThDP (replaced by Val51) or any other potential acid-base side chains near ThDP. The V51D substitution shifts the pH optimum to 6.

View Article and Find Full Text PDF

Acetohydroxyacid Synthases (AHASs) have separate small regulatory subunits which specifically activate the catalytic subunits with which they are associated. The binding sites for the inhibitory amino acid(s) (valine or leucine) are in the interface between two ACT (small ligand binding) domains, and are apparently found in all AHAS regulatory subunits. However, the structures and the kinetic mechanisms of the different enzymes are very heterogeneous.

View Article and Find Full Text PDF

Acetohydroxy acid synthase (AHAS) is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the first common step in the biosynthesis of branched-chain amino acids, condensation of pyruvate with a second 2-ketoacid to form either acetolactate or acetohydroxybutyrate. AHAS isozyme II from Escherichia coli is specific for pyruvate as the first donor substrate but exhibits a 60-fold higher specificity for 2-ketobutyrate (2-KB) over pyruvate as an acceptor substrate. In previous studies relying on steady state and transient kinetics, substrate competition and detailed analysis of the distribution of intermediates in the steady-state, we have identified several residues which confer specificity for the donor and acceptor substrates, respectively.

View Article and Find Full Text PDF

In order to clarify the role of the C-terminal domain of the ilvH protein (the regulatory subunit of enterobacterial AHAS isozyme III, whose structure has been solved and reported by Kaplun et al., J Mol Biol 357, 951, 2006) in the process of valine inhibition of AHAS III, we developed a procedure that randomly mutagenizes a specific segment of a gene through error-prone PCR and screens for mutants on the basis of the properties of the holoenzymes reconstituted in vivo (REM-ivrs). Previous work showed that the N-terminal domain includes the valine-binding ACT domain of the regulatory subunit and is sufficient to completely activate the catalytic subunit, but that this domain cannot confer valine sensitivity on the reconstituted enzyme.

View Article and Find Full Text PDF

Acetohydroxy acid synthase (AHAS) is a thiamin diphosphate-dependent enzyme that catalyzes the condensation of pyruvate with either another pyruvate molecule (product acetolactate) or 2-ketobutyrate (product acetohydroxybutyrate) as the first common step in the biosynthesis of branched-chain amino acids in plants, bacteria, algae, and fungi. AHAS isozyme II from Escherichia coli exhibits a 60-fold higher specificity for 2-ketobutyrate (2-KB) over pyruvate as acceptor, which was shown to result from a stronger hydrophobic interaction of the ethyl substituent of 2-KB with the side chain of Trp464 in multiple, apparently committed steps of catalysis. Here, we have elucidated the molecular determinants conferring specificity for pyruvate as the sole physiological donor substrate.

View Article and Find Full Text PDF

The large, catalytic subunits (LSUs; ilvB, ilvG and ilvI, respectively) of enterobacterial acetohydroxyacid synthases isozymes (AHAS I, II and III) have molecular weights approximately 60 kDa and are paralogous with a family of other thiamin diphosphate dependent enzymes. The small, regulatory subunits (SSUs) of AHAS I and AHAS III (ilvN and ilvH) are required for valine inhibition, but ilvN and ilvH can only confer valine sensitivity on their own LSUs. AHAS II is valine resistant.

View Article and Find Full Text PDF

The enzyme threonine deaminase (TD) is a key regulatory enzyme in the pathway for the biosynthesis of isoleucine. TD is inhibited by its end product, isoleucine, and this effect is countered by valine, the product of a competing biosynthetic pathway. Sequence and structure analyses have revealed that the protomers of many TDs have C-terminal regulatory domains, composed of two ACT-like subdomains, which bind isoleucine and valine, while others have regulatory domains of approximately half the length, composed of only a single ACT-like domain.

View Article and Find Full Text PDF

Recent evidence suggests that there is a dynamic microbial biota living on the surface and in the mucus layer of many hermatypic coral species that plays an essential role in coral well-being. Most of the studies published to date emphasize the importance of prokaryotic communities associated with the coral mucus in coral health and disease. In this study, we report the presence of a protist (Fng1) in the mucus of the hermatypic coral Fungia granulosa from the Gulf of Eilat.

View Article and Find Full Text PDF

Thiamine diphosphate (ThDP), a derivative of vitamin B1, is an enzymatic cofactor whose special chemical properties allow it to play critical mechanistic roles in a number of essential metabolic enzymes. It has been assumed that all ThDP-dependent enzymes exploit a polar interaction between a strictly conserved glutamate and the N1' of the ThDP moiety. The crystal structure of glyoxylate carboligase challenges this paradigm by revealing that valine replaces the conserved glutamate.

View Article and Find Full Text PDF

The microbial biota dwelling in the mucus, on the surface, and in the tissues of many coral species may have an important role in holobiont physiology and health. This microbiota differs with coral species, water depth, and geographic location. Here we compare the surface mucus microbiota of the coral Fungia granulosa from the natural environment with that from individuals maintained in aquaria.

View Article and Find Full Text PDF

The enzyme acetohydroxyacid synthase (AHAS) catalyses the first common step in the biosynthesis of the three branched-chain amino acids. Enzymes in the AHAS family generally consist of regulatory and catalytic subunits. Here, we describe the first crystal structure of an AHAS regulatory subunit, the ilvH polypeptide, determined at a resolution of 1.

View Article and Find Full Text PDF

Although the avrA gene is prevalent among 80% of the Salmonella enterica serovars, only a small number of them usually express the respective virulence-associated effector protein AvrA. However, under culture conditions below pH 6.0 many of the AvrA non-producer strains (e.

View Article and Find Full Text PDF

AHAS I is an isozyme of acetohydroxyacid synthase which is apparently unique to enterobacteria. It has been known for over 20 years that it has many properties which are quite different from those of the other two enterobacterial AHASs isozymes, as well as from those of "typical" AHASs which are single enzymes in a given organism. These include a unique mechanism for regulation of expression and the absence of a preference for forming acetohydroxybutyrate.

View Article and Find Full Text PDF

Acetohydroxy acid synthase (AHAS) and related enzymes catalyze the production of chiral compounds [(S)-acetolactate, (S)-acetohydroxybutyrate, or (R)-phenylacetylcarbinol] from achiral substrates (pyruvate, 2-ketobutyrate, or benzaldehyde). The common methods for the determination of AHAS activity have shortcomings. The colorimetric method for detection of acyloins formed from the products is tedious and does not allow time-resolved measurements.

View Article and Find Full Text PDF

We tested the possibility of utilizing acetohydroxyacid synthase I (AHAS I) from Escherichia coli in a continuous flow reactor for production of R-phenylacetyl carbinol (R-PAC). We constructed a fusion of the large, catalytic subunit of AHAS I with a cellulose binding domain (CBD). This allowed purification of the enzyme and its immobilization on cellulose in a single step.

View Article and Find Full Text PDF

The thiamin diphosphate (ThDP)-dependent enzyme acetohydroxyacid synthase (AHAS) catalyzes the first common step in branched-chain amino acid biosynthesis. By specific ligation of pyruvate with the alternative acceptor substrates 2-ketobutyrate and pyruvate, AHAS controls the flux through this branch point and determines the relative rates of synthesis of isoleucine, valine, and leucine, respectively. We used detailed NMR analysis to determine microscopic rate constants for elementary steps in the reactions of AHAS II and mutants altered at conserved residues Arg-276, Trp-464, and Met-250.

View Article and Find Full Text PDF