Due to ongoing ocean warming, subtropical environments are becoming accessible to tropical species. Among these environments are the vermetid reefs of the Southeastern Mediterranean (SEM). In the last decades, these valuable coastal habitats witnessed the proliferation of numerous alien species of tropical origin.
View Article and Find Full Text PDFDeep-sea habitats are currently recognized as a hot spot for mercury (Hg) accumulation from anthropogenic sources, resulting in elevated concentrations of total mercury (THg) in deep-sea megafauna. Among them, deep-sea sharks (Class Chondrichthyes) are characterized by high trophic position and extended longevity and are, therefore, at high risk for mercury contamination. Despite this, sharks are overexploited by fishing activity in increasingly deeper water, worldwide, imposing health risks to human consumption.
View Article and Find Full Text PDFDischarge of gas-rich brines fuels productive chemosynthetic ecosystems in the deep sea. In these salty, methanic and sulfidic brines, microbial communities adapt to specific niches along the physicochemical gradients. However, the molecular mechanisms that underpin these adaptations are not fully known.
View Article and Find Full Text PDFSilica plays a key role in the growth of silicifying primary producers (e.g., diatoms) and hence the ocean carbon pump.
View Article and Find Full Text PDFThis study explores the accumulation of total mercury (THg) in deep-sea sediments and demersal megafauna of the ultra-oligotrophic Southeastern Mediterranean Sea (SEMS) across bathymetric gradients in the range 35-1900 m, sampled in seven cruises during 2013, 2017-2021, and 2023. Measurements of THg were conducted in surficial (0.0-0.
View Article and Find Full Text PDFCoastal phytoplankton communities are often exposed to multiple anthropogenic stressors simultaneously. Here, we experimentally examined how temperature increase (20-26 °C) and triazine-type herbicides pollution (500 ng terbutryn L), both recognized as emerging stressors, affect the abundance, physiology and selected saxitoxin gene expression in the toxic dinoflagellate Alexandrium minutum. The results show that A.
View Article and Find Full Text PDFFootprints of human activities identified in the sedimentary sequence of submerged historical saltpans can reveal the history of the site and can indicate the relative sea level during its operational period. Saltpans are man-made constructions used continuously for salt production in the Mediterranean at least for the last 2000 years. The east Adriatic coast contains many such submerged remains, preserved and well-dated by historical archives.
View Article and Find Full Text PDFPlanktonic Foraminifera are unique paleo-environmental indicators through their excellent fossil record in ocean sediments. Their distribution and diversity are affected by different environmental factors including anthropogenically forced ocean and climate change. Until now, historical changes in their distribution have not been fully assessed at the global scale.
View Article and Find Full Text PDFBenthic microbes are key organisms in the oligotrophic Southeastern Mediterranean Sea (SEMS), yet their abundance, activity, and diversity in this rapidly changing basin are not fully understood. We investigated the prokaryotic and microfungal communities throughout years 2018-2020 at 27 stations (6-1900 m water depths, down to 20 cm below the sediment surface), in two transects with distinct downslope transport regimes, and along the eutrophic coastline. We estimated microbial abundance with flow cytometry, secondary production as leucine assimilation, and sequenced marker genes (the 16S rRNA and internal transcribed spacer) to assess diversity indices.
View Article and Find Full Text PDFRising sea surface temperatures and extreme heat waves are affecting symbiont-bearing tropical calcifiers such as corals and Large Benthic Foraminifera (LBF). In many ecosystems, parallel to warming, global change unleashes a host of additional changes to the marine environment, and the combined effect of such multiple stressors may be far greater than those of temperature alone. One such additional stressor, positively correlated to temperature in evaporation-dominated shallow-water settings is rising salinity.
View Article and Find Full Text PDFThe marine macroalgae Ulva sp. is considered an ecosystem engineer in rocky shores of temperate waters worldwide. Ulva sp.
View Article and Find Full Text PDFConsidering the thermal limits of coastal macroalgae habitats in the South-Eastern Mediterranean, it is important to study the response of the associated meiofauna to better understand the expected feedback of ecosystems to future warming. In this study, we compared benthic foraminiferal assemblages from two common macroalgal habitats, Turf and Coralline algae, based on ecological monitoring of a thermally polluted station representing near future warming, and an undisturbed environment. None of the common local species is confined to a specific algal habitat.
View Article and Find Full Text PDFThis study was promoted by the recent efforts using larger benthic foraminiferal (LBF) shells geochemistry for the monitoring of heavy metals (HMs) pollution in the marine environment. The shell itself acts as a recorder of the ambient water chemistry in low to extreme HMs-polluted environments, allowing the monitoring of recent-past pollution events. This concept, known as sclerochronology, requires the addition of new parts (i.
View Article and Find Full Text PDFSandy sediment and its infauna were annually sampled along the shallow waters of the Israeli coast during the 2005-2016 period, as a part of the Israeli National Environmental Program framework, aiming to detect anthropogenic interference in that province by monitoring changes in the species composition, abundance, and diversity of the infaunal communities and in accompanied abiotic parameters: the levels of total organic carbon and a series of heavy metals and the site-specific grain size distribution. The > 250-μm fraction of the fauna was segregated from the sampled sediment and was identified to species or higher taxonomic level. Three spatial biotopes were determined based on their unique faunal composition, Haifa Bay, Haifa harbor, and the southern coast.
View Article and Find Full Text PDFCriteria for eutrophication related parameters to achieve and preserve good environmental status (GES) of the oligotrophic Israeli Mediterranean coast were proposed for nutrients, chlorophyll-a (Chl-a) and suspended particulate matter (SPM) concentrations. The criteria were derived from current conditions, the best choice for the area that has undergone large and irreversible ecological changes compared to the pristine background. A five-year data set (2010-2014, ca.
View Article and Find Full Text PDFThe Eastern Mediterranean is experiencing a large-scale invasion of alien tropical species from the Red Sea. This "Lessepsian invasion" began with the opening of the Suez Canal and is promoted by the ongoing oceanic warming. The environmental differences between the Red Sea and the Mediterranean act as a buffer allowing the invasion of certain species.
View Article and Find Full Text PDFIn order to establish environmentally sustainable industries there is a need for high-resolution temporal and spatial monitoring of heavy metal pollutants even at low concentrations before they become hazardous for local ecosystems. Here we present single chamber records of Cu, Zn and Pb in shells of two benthic foraminifera species with different shell types from two shallow coastal stations in Israel: An area adjacent to an electrical power plant and desalination factory (Hadera) and an industrially free nature reserve (Nachsholim). Records of both foraminifera species show elevated metal concentrations in Hadera clearly identifying the footprint of the local industrial facilities.
View Article and Find Full Text PDFThe coastal waters of the southeastern Mediterranean-Sea (SEMS) are routinely enriched with naturally-occurring and anthropogenic land-based nutrient loads. These external inputs may affect autotrophic and heterotrophic microbial biomass and activity. Here, we conducted 13 microcosm bioassays with different additions of inorganic NO-(N), PO-(P) and Si(OH)-(Si) in different seasons along the Mediterranean coast of Israel.
View Article and Find Full Text PDFThe competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel) estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM.
View Article and Find Full Text PDFShallow marine calcifiers play an important role as marine ecosystem engineers and in the global carbon cycle. Understanding their response to warming is essential to evaluate the fate of marine ecosystems under global change scenarios. A rare opportunity to test the effect of warming acting on natural ecosystems is by investigation of heat-polluted areas.
View Article and Find Full Text PDFPersistent thermohaline pollution at a site along the northern coast of Israel, due to power and desalination plants, is used as a natural laboratory to evaluate the effects of rising temperature and salinity levels on benthic foraminifera living in shallow hard-bottom habitats. Biomonitoring of the disturbed area and a control station shows that elevated temperature is a more significant stressor compared to salinity, thus causing a decrease in abundance and richness. Critical temperature thresholds were observed at 30 and 35°C, the latter representing the most thermally tolerant species in the studied area Pararotalia calcariformata, which is the only symbiont-bearing species observed within the core of the heated area.
View Article and Find Full Text PDFWe have assessed the redistribution of a secondary source of sedimentary anthropogenic mercury in the Haifa bay (HB) area (SE Levantine basin), which is the northern sink for Nile-driven sand. A long-term (30years) ~80% decrease of the total sedimentary mercury concentrations (THg) was recorded in the inner bay, while an up to 3-fold increase was recorded in the top sediments of the outer bay. Sedimentary THg depth profiles and their temporal variability were used to model the main re-distribution processes, mainly resuspension associated with winter storm-derived transport.
View Article and Find Full Text PDFTextularia agglutinans d'Orbigny is a non-symbiont bearing and comparatively large benthic foraminiferal species with a widespread distribution across all oceans. In recent years, its populations have considerably expanded along the Israeli Mediterranean coast of the eastern Levantine basin. Despite its exceptionally widespread occurrence, no molecular data have yet been obtained.
View Article and Find Full Text PDFThis study provides, for the first time, a baseline evaluation of dioxin-like biological activity in sediments and fish sampled in- and adjacent to anchorages along the Mediterranean and Red Sea coasts of Israel. It indicates the effect of past pollution, still present in the sediments of older Israeli harbors, with putative contribution of still existing sources of pollution. A commercial reporter gene bioassay was used to evaluate the biological activity of dioxin-like compounds extracted from the samples.
View Article and Find Full Text PDFThe spatial variability in the composition of bacterioplankton communities from the Levantine basin off the Israeli coast (south-eastern Mediterranean Sea) was studied using water samples from nine stations down to 1880 m depth. An nMDS (non-metric multidimensional scaling) ordination plot of ARISA (automated rRNA intergenic spacer analyses) fingerprints performed on 39 water samples revealed three groups of communities based on depth (epi, meso and bathypelagial waters), while the stations' geographical location did not seem to have an effect on the distribution of bacterioplankton assemblages. Interestingly, communities from the two deep pelagic zones were further grouped depending on the three prevailing water masses in the Levantine basin, and depth, salinity, temperature and silicic acid were significantly related to the variations of the bacterial community compositions.
View Article and Find Full Text PDF