Publications by authors named "Baraibar M"

The aim of this work was to assess the potential benefits of the enrichment of a chitosan hydrogel patch with secretome and its epicardial implantation in a murine model of chronic ischemia, focusing on the potential to restore the functional capacity of the heart. Thus, a hydrogel with a final polymer concentration of 3 % was prepared from chitosan with an acetylation degree of 24 % and then bio-functionalized with a secretome produced by mesenchymal stromal cells. The identification of proteins in the secretomes showed the presence of several proteins known to have beneficial effects on cardiac muscle repair.

View Article and Find Full Text PDF

309Sterilization is a crucial step in the process of developing bioinks for tissue engineering applications. In this work, alginate/gelatin inks were subjected to three sterilization methods: ultraviolet (UV) radiation, filtration (FILT), and autoclaving (AUTO). In addition, to simulate the sterilization effect in a real environment, inks were formulated in two different media, specifically, Dulbecco's Modified Eagle's Medium (DMEM) and phosphate-buffered saline (PBS).

View Article and Find Full Text PDF

Background And Objective: Premature skin ageing, and skin hyperpigmentation are influenced by exogenous factors, such as ultraviolet radiation and blue light. In this study, we assess the protective effect of a sunscreen (TDF Blu Voile Sunscreen) in protecting the skin against the harmful effects of blue light irradiation in vivo and through the in situ quantitative and qualitative evaluation of protein carbonylation in human skin explants.

Methodology: The protective effect of the test product against blue light was first evaluated ex vivo on human skin explants.

View Article and Find Full Text PDF

Background: Increased protein carbonylation is a hallmark of oxidative stress, protein homeostasis dysregulation and aging in the nervous system and skin. Sensory neurons interact with skin cells and are involved in skin homeostasis. We have previously reported that the 5-octanoyl salicylic acid (C8-SA), a salicylic acid derivative, increased C.

View Article and Find Full Text PDF

Accumulation of oxidatively modified proteins is a hallmark of organismal aging in vivo and of cellular replicative senescence in vitro. Failure of protein maintenance is a major contributor to the age-associated accumulation of damaged proteins that is believed to participate to the age-related decline in cellular function. In this context, quantitative proteomics approaches, including 2-D gel electrophoresis (2-DE)-based methods, represent powerful tools for monitoring the extent of protein oxidative modifications at the proteome level and for identifying the targeted proteins, also referred as to the "oxi-proteome.

View Article and Find Full Text PDF
Article Synopsis
  • Impaired metabolism of glucose and fatty acids in skeletal muscles can lead to serious muscle conditions like myopathy and rhabdomyolysis, especially in children with LPIN1 gene mutations.
  • Lipin1 deficiency in mouse models causes myopathy with notable lipid accumulation and metabolic imbalances, indicating issues in fatty acid synthesis and oxidation.
  • Treatments with TUDCA and bezafibrate show promise in improving muscle health and strength in cases of lipin1 deficiency by addressing underlying cellular stress.
View Article and Find Full Text PDF

Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e.

View Article and Find Full Text PDF

Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not completely understood.

View Article and Find Full Text PDF

Proteins are involved in key cellular functions and our health and wellness depends on their quality. Accumulation of oxidatively damaged proteins is a hallmark of deleterious processes such increased oxidative stress, chronic inflammation, ageing and age-related diseases. Thus, quantifying and identifying oxidized proteins is a biomarker of choice for monitoring biological ageing and/or the efficiency of anti-oxidant, ant-inflammatory and anti-ageing therapies.

View Article and Find Full Text PDF

Accumulation of damaged macromolecules, including irreversibly oxidized proteins, is a hallmark of cellular and organismal ageing. Failure of protein homesotasis is a major contributor to the age-related accumulation of damaged proteins. In skeletal muscle, tissue maintenance and regeneration is assured by resident adult stem cells known as satellite cells.

View Article and Find Full Text PDF

Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions.

View Article and Find Full Text PDF

Recent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells.

View Article and Find Full Text PDF

The cellular basis of age-related tissue deterioration remains largely obscure. The ability to activate compensatory mechanisms in response to environmental stress is an important factor for survival and maintenance of cellular functions. Autophagy is activated both under short and prolonged stress and is required to clear the cell of dysfunctional organelles and altered proteins.

View Article and Find Full Text PDF

Background: The impact of overweight among men of reproductive-age may affect fertility. Abdominal fat, more than body mass index, is an indicator of higher metabolic risk, which seems to be involved in decreasing sperm quality. This study aims to assess the relationship between abdominal fat and sperm DNA fragmentation and the effect of abdominal fat loss, among 6 men in subfertile couples.

View Article and Find Full Text PDF

Aging is accompanied by the gradual deterioration of cell functions. Particularly, mitochondrial dysfunction, associated with an accumulation of damaged proteins, is of key importance due to the central role of these organelles in cellular metabolism. However, the detailed molecular mechanisms involved in such impairment have not been completely elucidated.

View Article and Find Full Text PDF

Unlabelled: Increased protein carbonyl content is a hallmark of cellular and organismal aging. Protein damage leading to the formation of carbonyl groups derives from direct oxidation of several amino acid side chains but can also derive through protein adducts formation with lipid peroxidation products and dicarbonyl glycating compounds. All these modifications have been implicated during oxidative stress, aging and age-related diseases.

View Article and Find Full Text PDF

Skeletal muscle ageing is characterized by a progressive and dramatic loss of muscle mass and strength leading to decreased muscular function resulting in muscle weakness which is often referred to as sarcopenia. Following the standardisation of "omics" approaches to study the genome (genomics) and the transcriptome (transcriptomics), the study of the proteins encoded by the genome, referred to as proteomics, is a tremendous challenge. Unlike the genome, the proteome varies in response to many physiological or pathological factors.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1.

View Article and Find Full Text PDF

Oxidatively modified proteins build-up with age results, at least in part, from the increase of reactive oxygen species and other toxic compounds originating from both cellular metabolism and external factors. Experimental evidence has also indicated that failure of protein maintenance is a major contributor to the age-associated accumulation of damaged proteins. We have previously shown that oxidized proteins as well as proteins modified by lipid peroxidation and glycoxidation adducts are accumulating in senescent human WI-38 fibroblasts and reported that proteins targeted by these modifications are mainly involved in protein maintenance, energy metabolism and cytoskeleton.

View Article and Find Full Text PDF

Protein damage mediated by oxidation, protein adducts formation with advanced glycated end products and with products of lipid peroxidation, has been implicated during aging and age-related diseases, such as neurodegenerative diseases. Increased protein modification has also been described upon replicative senescence of human fibroblasts, a valid model for studying aging in vitro. However, the mechanisms by which these modified proteins could impact on the development of the senescent phenotype and the pathogenesis of age-related diseases remain elusive.

View Article and Find Full Text PDF

Accumulation of oxidized and damaged proteins is a hallmark of the aging process in different organs and tissues. Intracellular protein degradation is normally the most efficient mechanism to prevent toxicity associated with the accumulation of altered proteins without affecting the cellular reserves of amino acids. Protein degradation by the proteasomal system is a key process for the maintenance of cellular protein homeostasis and has come into the focus of aging research during the last decade.

View Article and Find Full Text PDF

Intracellular inclusion bodies (IBs) containing ferritin and iron are hallmarks of hereditary ferritinopathy (HF). This neurodegenerative disease is caused by mutations in the coding sequence of the ferritin light chain (FTL) gene that generate FTL polypeptides with a C-terminus that is altered in amino acid sequence and length. Previous studies of ferritin formed with p.

View Article and Find Full Text PDF

Glucose solutions incubated at low oxygen concentration gave rise to the appearance of an absorption band in the UVA-visible region after 10 days. Further characterization evidenced that this band was composed by a single chomophore with maximum absorption bands at 335 and 365 nm. HPLC/MS and UV spectroscopy assays indicated that this product is composed by five unities of furan.

View Article and Find Full Text PDF

Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified.

View Article and Find Full Text PDF

Trans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues.

View Article and Find Full Text PDF