Trop Anim Health Prod
January 2025
This study evaluated the effects of incorporating biological silage from tambaqui (Colossoma macropomum) by-products (BST) on the performance, hematological and plasma biochemical parameters, and egg quality (physical, proximate composition and sensory characteristics) of older commercial hens. The BST was prepared by ensiling tambaqui by-products with lactic acid bacteria, cassava trimmings, and preservatives, producing a nutrient-rich, high-protein feed ingredient. One hundred and twenty Hisex Brown hens (83 weeks old) were divided into five treatment groups, each receiving diets with 0, 1, 2, 3, or 4% BST.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Live imaging of microtubules (MTs) allows obtaining mechanistic insights into cell division. In literature, mitotic spindle dynamics have been investigated in mammalian systems largely focusing on established cell lines. Here, we describe a detailed protocol that investigates MT dynamics during cell division in a 3D mouse intestinal organoid model that more accurately captures the in vivo system.
View Article and Find Full Text PDFThe majority of the eukaryotic cell surface is decorated with a layer of membrane-attached polysaccharides and glycoproteins collectively referred to as the glycocalyx. While the formation of a bulky glycocalyx has been associated with the cancer progression, the mechanisms by which the glycocalyx regulates cancer invasiveness are incompletely understood. We address this question by first documenting subtype-specific expression of the major glycocalyx glycoprotein Mucin-1 (MUC1) in breast cancer patient samples and breast cancer cell lines.
View Article and Find Full Text PDFFish processing provides waste of around 50.0% to 70.0% of the animal's initial weight, especially the skin.
View Article and Find Full Text PDFPlanar spindle orientation is critical for epithelial tissue organization and is generally instructed by the long cell-shape axis or cortical polarity domains. We introduced mouse intestinal organoids in order to study spindle orientation in a monolayered mammalian epithelium. Although spindles were planar, mitotic cells remained elongated along the apico-basal (A-B) axis, and polarity complexes were segregated to basal poles, so that spindles oriented in an unconventional manner, orthogonal to both polarity and geometric cues.
View Article and Find Full Text PDFand infections of Acanthamoeba castellanii, like most other viral infections, induce cytopathic effects (CPE). The details of how they bring about CPE and to what extent and how they modify the host cytoskeletal network are unclear. In this study, we compared the rearrangement of the host cytoskeletal network induced by and upon infection.
View Article and Find Full Text PDFFabrication of nanoscale DNA devices to generate 3D nano-objects with precise control of shape, size, and presentation of ligands has shown tremendous potential for therapeutic applications. The interactions between the cell membrane and different topologies of 3D DNA nanostructures are crucial for designing efficient tools for interfacing DNA devices with biological systems. The practical applications of these DNA nanocages are still limited in cellular and biological systems owing to the limited understanding of their interaction with the cell membrane and endocytic pathway.
View Article and Find Full Text PDFBackground And Aims: The role of King Vision videolaryngoscope (KVL) is well known in the anticipated difficult airway. However, its performance in patients with unanticipated restricted view of the glottis has never been investigated. The aim of this study was to evaluate the performance of KVL in patients with limited glottic view (POGO score <50%).
View Article and Find Full Text PDFThe mechanisms by which the mechanoresponsive actin crosslinking protein α-actinin-4 (ACTN4) regulates cell motility and invasiveness remain incompletely understood. Here, we show that, in addition to regulating protrusion dynamics and focal adhesion formation, ACTN4 transcriptionally regulates expression of non-muscle myosin IIB (NMM IIB; heavy chain encoded by MYH10), which is essential for mediating nuclear translocation during 3D invasion. We further show that an indirect association between ACTN4 and NMM IIA (heavy chain encoded by MYH9) mediated by a functional F-actin cytoskeleton is essential for retention of NMM IIA at the cell periphery and modulation of focal adhesion dynamics.
View Article and Find Full Text PDFIn comparison to synthetic hydrogels where ligand density and stiffness can be independently tuned, cell responses are expected to deviate on native biopolymer networks where ligand density and stiffness are coupled. Here we probe the tensional homeostasis of fibroblasts on methacrylated gelatin (GelMA) gels, which are widely used in tissue engineering applications. On 5%-15% GelMA gels which are very soft (10-100's of Pa's in stiffness), fibroblasts were found to spread extensively and assemble prominent stress fibers and focal adhesions.
View Article and Find Full Text PDFPhenotypic heterogeneity is increasingly acknowledged to confer several advantages to cancer progression and drug resistance. Here, we probe the collective importance of heterogeneity in cell size and deformability in breast cancer invasion. A computational model of invasion of a heterogeneous cell aggregate predicts that combined heterogeneity in cell size and deformability enhances invasiveness of the whole population, with maximum invasiveness at intermediate cell-cell adhesion.
View Article and Find Full Text PDFQuantification of nuclear stiffness is challenging for cells encapsulated within a 3D extracellular matrix (ECM). Here, we describe an experimental setup for measuring microenvironment-dependent tuning of nuclear stiffness using an atomic force microscope (AFM). In our setup, ECM-coated polyacrylamide hydrogels mimic the stiffness of the microenvironment, enabling the measurement of nuclear stiffness using an AFM probe in live cancer cells.
View Article and Find Full Text PDFSubstantial number of breast cancer (BC) patients undergoing radiation therapy (RT) develop local recurrence over time. During RT therapy, cells can gradually acquire resistance implying adaptive radioresistance. Here we probe the mechanisms underlying this acquired resistance by first establishing radioresistant lines using ZR-75-1 and MCF-7 BC cells through repeated exposure to sub-lethal fractionated dose of 2Gy up to 15 fractions.
View Article and Find Full Text PDFLarge nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix.
View Article and Find Full Text PDFStigmasterol, a naturally occurring 6-6-6-5 monohydroxy phytosterol, was extracted from the leaves of Indian medicinal plant , commonly known as Kakoli. In continuation of our studies on the self-assembly properties of naturally occurring terpenoids, herein, we report the first self-assembly properties of this phytosterol in different organic liquids. The molecule self-assembled in organic liquids yielding supramolecular gels in most of the liquids studied the formation of fibers and belt-like architechtures of nano-to micrometer diameter.
View Article and Find Full Text PDFDuring amoeboidal migration, cancer cells migrate in a protease-independent manner by squeezing through pre-existing gaps in the extracellular matrix (ECM). However, the extent to which cells alter their physical properties in order to sustain this mode of migration remains unclear. Here, we address this question by documenting biophysical changes in the properties of highly invasive MDA-MB-231 and HT-1080 cells upon inhibition of pericellular proteolysis.
View Article and Find Full Text PDFThe phytochemicals present in the stem bark extract of (commonly known as Karabi) have been utilized for the green synthesis of stable gold-conjugated nanoparticles at room temperature under very mild conditions. The green synthesized gold-conjugated nanoparticles were characterized by surface plasmon resonance spectroscopy, High resolution transmission electron microscopy, X-ray diffraction studies and dynamic light scattering. A mechanism for the synthesis and stabilization of gold-conjugated nanoparticles (AuNPs) has been proposed.
View Article and Find Full Text PDFUnlabelled: Interfacial migration is central to multiple processes including morphogenesis and wound healing. However, the sensitivity of interfacial migration to properties of the interfacial microenvironment has not been adequately explored. Here, we address this question by tracking motility of 3T3 fibroblasts at the interface of two hydrogels.
View Article and Find Full Text PDFObjective: Distal radius fracture (DRF) is a common presentation to the ED. However, little is known about the long-term functional outcome of these patients following their initial management in the ED.
Methods: In order to evaluate the long-term functional outcome of DRF, we collected the Disabilities of Arm, Shoulder and Hand (DASH) scores from the patients who attended our ED with DRF between January 2014 and June 2015.
Invadopodia are micron-sized invasive structures that mediate extracellular matrix (ECM) degradation through a combination of membrane-bound and soluble matrix metalloproteinases (MMPs). However, how such localized degradation is converted into pores big enough for cancer cells to invade, and the relative contributions of membrane-bound versus soluble MMPs to this process remain unclear. In this article, we address these questions by combining experiments and simulations.
View Article and Find Full Text PDFThe power capability of a lithium ion battery is governed by its resistance, which changes with battery state such as temperature, state of charge, and state of health. Characterizing resistance, therefore, is integral in defining battery operational boundaries, estimating its performance and tracking its state of health. There are many techniques that have been employed for estimating the resistance of a battery, these include: using DC pulse current signals such as pulse power tests or Hybrid Pulse Power Characterization (HPPC) tests; using AC current signals, i.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
February 2018
The failure of chemotherapeutic drugs in treatment of various cancers is attributed to the acquisition of drug resistance. However, the migration mechanisms of drug-resistant cancer cells remain incompletely understood. Here we address this question from a biophysical perspective by mapping the phenotypic alterations in ovarian cancer cells (OCCs) resistant to cisplatin and paclitaxel.
View Article and Find Full Text PDFCancer invasion through dense extracellular matrices (ECMs) is mediated by matrix metalloproteinases (MMPs) which degrade the ECM thereby creating paths for migration. However, how this degradation influences the phenotype of cancer cells is not fully clear. Here we address this question by probing the function of MMPs in regulating biophysical properties of cancer cells relevant to invasion.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2018
Acquired radioresistance accompanied with increased metastatic potential is a major hurdle in effective radiotherapy of breast cancers. However, the nature of their inter-dependence and the underlying mechanism remains largely intangible. By employing radioresistant (RR) cell lines, we herein demonstrate that MCF-7 RR cells display phenotypic and molecular alterations evocative of epithelial to mesenchymal transition (EMT) with increased traction forces and membrane ruffling culminating in boosted invasiveness.
View Article and Find Full Text PDF