Publications by authors named "Baqun Zhang"

Estimating thresholds when a threshold effect exists has important applications in biomedical research. However, models/methods commonly used in the biomedical literature may lead to a biased estimate. For patients undergoing coronary artery bypass grafting (CABG), it is thought that exposure to low oxygen delivery (DO2) contributes to an increased risk of avoidable acute kidney injury.

View Article and Find Full Text PDF

An optimal individualized treatment regime (ITR) is a decision rule in allocating the best treatment to each patient and, hence, maximizing overall benefits. In this paper, we propose a novel framework based on nonparametric inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) estimators of the value function when the data are subject to right censoring. In contrast to most existing approaches that are designed to maximize the expected survival time under a binary treatment framework, the proposed method targets maximizing the mean residual lifetime of patients.

View Article and Find Full Text PDF

Identifying the optimal treatment decision rule, where the best treatment for an individual varies according to his/her characteristics, is of great importance when treatment effect heterogeneity exists. We develop methods for estimating the optimal treatment decision rule based on data with survival time as the primary endpoint. Our methods are based on a flexible semiparametric accelerated failure time model, where only the treatment contrast (ie, the difference in means between treatments) is parameterized and all other aspects are unspecified.

View Article and Find Full Text PDF

A dynamic treatment regime is a sequence of decision rules, each corresponding to a decision point, that determine that next treatment based on each individual's own available characteristics and treatment history up to that point. We show that identifying the optimal dynamic treatment regime can be recast as a sequential optimization problem and propose a direct sequential optimization method to estimate the optimal treatment regimes. In particular, at each decision point, the optimization is equivalent to sequentially minimizing a weighted expected misclassification error.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with complex traits and diseases. However, most of them are located in the non-protein coding regions, and therefore it is challenging to hypothesize the functions of these non-coding GWAS variants. Recent large efforts such as the ENCODE and Roadmap Epigenomics projects have predicted a large number of regulatory elements.

View Article and Find Full Text PDF
Article Synopsis
  • In genetic studies using next generation sequencing, researchers usually analyze genetic information in two steps, but this may lead to mistakes and less accurate results.
  • New methods have been created that test for connections between genetics and traits without needing to do the two-step process, making the tests more reliable and powerful.
  • The authors developed a new version of these tests that works well for all types of genetic variants and makes it easier to analyze data, especially for rare genetic traits.
View Article and Find Full Text PDF

A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on a patient's history. Q- and A-learning are two main approaches for estimating the optimal regime, i.e.

View Article and Find Full Text PDF

A treatment regime is a rule that assigns a treatment, among a set of possible treatments, to a patient as a function of his/her observed characteristics, hence "personalizing" treatment to the patient. The goal is to identify the optimal treatment regime that, if followed by the entire population of patients, would lead to the best outcome on average. Given data from a clinical trial or observational study, for a single treatment decision, the optimal regime can be found by assuming a regression model for the expected outcome conditional on treatment and covariates, where, for a given set of covariates, the optimal treatment is the one that yields the most favorable expected outcome.

View Article and Find Full Text PDF

A treatment regime maps observed patient characteristics to a recommended treatment. Recent technological advances have increased the quality, accessibility, and volume of patient-level data; consequently, there is a growing need for powerful and flexible estimators of an optimal treatment regime that can be used with either observational or randomized clinical trial data. We propose a novel and general framework that transforms the problem of estimating an optimal treatment regime into a classification problem wherein the optimal classifier corresponds to the optimal treatment regime.

View Article and Find Full Text PDF