Publications by authors named "Bapurao B Shingate"

Monocarbonyl analogs of curcumin (MACs) represent structurally modified versions of curcumin. The existing literature indicates that MACs exhibit enhanced anticancer properties compared with curcumin. Numerous research articles in recent years have emphasized the significance of MACs as effective anticancer agents.

View Article and Find Full Text PDF

Curcumin is an important phytochemical, found in the Asian countries, especially in the Indian subcontinent. The use of this "privileged natural product" in the diversity-oriented synthesis of curcumin-based heterocycles via multicomponent reactions (MCRs) is the subject of interest for many medicinal chemists across the globe. This review particularly focuses on the reactions involving curcuminoids as one of the reactants in the MCRs of curcuminoid to synthesize curcumin-based heterocycles.

View Article and Find Full Text PDF

The present work describes design of a small library of new 1,2,3-triazole-appended bis-pyrazoles by using a molecular hybridization approach, and the synthesized hybrids were evaluated for their antifungal activity against different fungal strains, namely, , , , , , and . All the compounds exhibited broad-spectrum activity against the tested fungal strains with excellent minimum inhibitory concentration values. The molecular docking study against sterol 14α-demethylase (CYP51) could provide valuable insights into the binding modes and affinity of these compounds.

View Article and Find Full Text PDF

A series of new 1,2,3-triazole-tethered coumarin conjugates linked by N-phenylacetamide was efficiently synthesized via the click chemistry approach in excellent yields. The synthesized conjugates were evaluated for their in vitro antifungal and antioxidant activities. Antifungal activity determination was carried out against fungal strains such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger and Cryptococcus neoformans.

View Article and Find Full Text PDF

In search for new fungicidal and free radical scavenging agents, we synthesized a focused library of 2-chloroquinoline based monocarbonyl analogs of curcumin (MACs). The synthesized MACs were evaluated for in vitro antifungal and antioxidant activity. The antifungal activity was evaluated against five different fungal strains such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, and Cryptococcus neoformans, respectively.

View Article and Find Full Text PDF

A search for potent antiproliferative agents has prompted to design and synthesize aryloxy bridged and amide linked dimeric 1,2,3-triazoles (7a-j) by using 1,3-dipolar cycloaddition reaction between 2-azido-N-phenylacetamides (4a-e) and bis(prop-2-yn-1-yloxy)benzenes (6a-b) via copper (I)-catalyzed click chemistry approach with good to excellent yields. All the newly synthesized compounds have been screened for their in vitro antiproliferative activities against two human cancer cell lines. The compounds 7d, 7e, 7h, 7i and 7j have revealed promising antiproliferative activity against human breast cancer cell line (MCF-7), whereas, the compounds 7a, 7b, 7c, 7i and 7j were observed as potent antiproliferative agents against human lung cancer cell line (A-549).

View Article and Find Full Text PDF

A facile, highly efficient, and greener method for the synthesis of new 1,4-disubstituted-1,2,3-triazoles was conducted using [EtNH][OAc] as a medium by the implementation of ultrasound irradiation click chemistry, affording excellent yields. The present synthetic method exhibited numerous advantages such as mild reaction conditions, excellent product yields, minimal chemical waste, operational simplicity, shorter reaction time, and a wide range of substrate scope. The synthesized compounds were further evaluated for antifungal activity against five fungal strains, and some of the compounds displayed equivalent or greater potency than the standard drug.

View Article and Find Full Text PDF

We describe the synthesis of novel triazole-incorporated diindolylmethanes (DIMs) using a molecular hybridization approach. The antitubercular activity of the DIMs against H37Ra (ATCC 25177) was tested in the active and dormant state. Among all the synthesized conjugates, the compounds , , , , , , and displayed good antitubercular activity against both the active and dormant H37Ra strain.

View Article and Find Full Text PDF

Background & Objective: Novel 1,2,3-triazole based benzylidenehydrazide derivatives were synthesized and evaluated for antitubercular activity against Mycobacterium tuberculosis (MTB) H37Ra, M. bovis BCG and cytotoxic activity. Most of the derivatives exhibited promising in vitro potency against MTB characterized by lower MIC values.

View Article and Find Full Text PDF

A series of quinoline incorporated monocarbonyl curcumin analogues was efficiently synthesized using [HDBU][HSO] as catalyst via Knoevenagel type condensation and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra (MTB) and Mycobacterium bovis BCG in dormant state. The analogues 3e, 3h, 4a and 4e exhibited very good antitubercular activity. The antiproliferative activity of the analogues against MCF-7, A549 and HCT-116 cell lines was evaluated using modified MTT assay and these compounds were found to be non-cytotoxic.

View Article and Find Full Text PDF

Objective: We have synthesized new quinolidinyl-thiazolidinones via Knoevenagel condensation- alkylation reaction, catalyzed by [Et3NH][HSO4]. The present approach offers several advantages such as higher yields, eco-friendly reaction condition and economic availability of the catalyst.

Method: The newly synthesized compounds were evaluated for their in vitro antifungal activity against six fungal strains.

View Article and Find Full Text PDF

A series of rhodanine incorporated quinoline derivatives were efficiently synthesized using reusable DBU acetate as ionic liquid and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra (MTB) (ATCC 25177) and Mycobacterium bovis BCG (ATCC 35743) both in active and dormant state. Compounds 3e, 3f, 3g, 3h and 3i exhibited very good antitubercular activity. The active compounds were studied for cytotoxicity against HUVEC, THP-1, macrophages, A549, PANC-1 and HeLa cell lines using modified MTT assay and were found to be noncytotoxic.

View Article and Find Full Text PDF

In search of new active molecules against Mycobacterium tuberculosis (MTB) H37Ra and Mycobacterium bovis BCG, a small focused library of rhodanine incorporated tetrazoloquinoline has been efficiently synthesized by using [HDBU][HSO4] acidic ionic liquid. The compound 3c found to be promising inhibitor of MTB H37Ra and M. bovis BCG characterized by lower MIC values 4.

View Article and Find Full Text PDF

We have developed, highly efficient, one-pot, solvent-free, [Et3NH][HSO4] catalyzed multicomponent reaction protocol for the synthesis of 1,3-thiazolidin-4-ones in excellent yields. For the first time, the 1,3-thiazolidin-4-ones were evaluated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis dormant MTB H37Ra and Mycobacterium bovis BCG strains. Among the synthesized basic 1,3-thiazolidin-4-ones, particularly the compounds 4c, 4d, 4e, 4f, 4h, 4i and 4j displays promising antitubercular activity along with no significant cytotoxicity against the cell lines MCF-7, A549 and HCT-116.

View Article and Find Full Text PDF

In search of new active molecules against Mycobacterium tuberculosis (MTB) H37Ra and M. bovis BCG, a small focused library of benzothiazinone based 1,2,3-triazoles has been efficiently prepared via click chemistry approach. Several derivatives were found to be promising inhibitors of MTB and M.

View Article and Find Full Text PDF

Stereoselective synthesis of novel steroidal C-20 tertiary alcohols with thiazole and pyridine side chain using Grignard reaction of steroidal ketones and thiazole/pyridine magnesium bromide have been realized. These molecules were evaluated in vitro for their antifungal and antibacterial activities. Most of the compounds exhibited significant antifungal and antibacterial activity against all the tested strains.

View Article and Find Full Text PDF

An efficient and greener protocol for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one using tetradecyltrimethylammonium bromide (TTAB) at room temperature in water is described.

View Article and Find Full Text PDF

Synthesis of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives (4a-h) using 1,3-dipolar cycloaddition (click chemistry) reaction of 3-(azidomethyl)-2-chloro-quinoline derivatives (3a-h) with phenyl acetylene in the presence of Cu(I) catalyst has been achieved in very high yield. These molecules were evaluated in vitro for their antifungal and antibacterial activity. Most of the compounds exhibited significant antifungal and antibacterial activity against all the tested strains.

View Article and Find Full Text PDF

1-Hexanesulphonic acid sodium salt was found to be an efficient catalyst for the green synthesis of alpha-aminophosphonates by the coupling of aldehydes/ketone, an amine and triethyl phosphite under ultrasound irradiation at ambient temperature for appropriate time to furnish the desired product in good to excellent yield under solvent-free condition. This catalyst provides clean conversion; greater selectivity and easy workup make this protocol practical and economically attractive.

View Article and Find Full Text PDF

A series of new alpha-hydroxyphosphonate and alpha-acetoxyphosphonate derivatives have been synthesized for the first time of tetrazolo [1, 5-a] quinoline derivatives. Elemental analysis, IR, (1)H NMR, (13)C NMR and mass spectral data elucidated the structures of the all newly synthesized compounds. In vitro antimicrobial activities of the synthesized compounds were investigated against Gram-positive Bacillus subtilis, Gram-negative Escherichia coli and fungi Candida albicans and Aspergillus niger.

View Article and Find Full Text PDF

A synthesis of ±-cherylline dimethyl ether is reported. The key steps involved are Michael-type addition, radical azidonation of an aldehyde, Curtius rearrangement, and reduction of an isocyanate intermediate followed by Pictet-Spengler cyclization.

View Article and Find Full Text PDF

Homologation of 16-dehydropregnenolone acetate leads to excellent stereocontrolled synthesis of unnatural C (20R) aldehydes and through compound .

View Article and Find Full Text PDF