Publications by authors named "Baptiste Depalle"

Tooth enamel maturation requires the removal of proteins from the mineralizing enamel matrix to allow for crystallite growth until full hardness is reached to meet the mechanical needs of mastication. While this process takes up to several years in humans before the tooth erupts, it is greatly accelerated in in the faster developing pig. As a result, pig teeth erupt with softer, protein-rich enamel that is similar to hypomineralized human enamel but continues to harden quickly after eruption.

View Article and Find Full Text PDF

Excess albumin in enamel is a characteristic of the prevalent developmental dental defect known as chalky teeth or molar hypomineralization (MH). This study uses proteomic analyses of pig teeth to discern between developmental origin and post-eruptive contamination and to assess the similarity to hypomineralized human enamel. Here, the objective is to address the urgent need for an animal model to uncover the etiology of MH and to improve treatment.

View Article and Find Full Text PDF

The teeth of humans and pigs are similar in size, shape, and enamel thickness. While the formation of human primary incisor crowns takes about 8 months, domestic pigs form their teeth within a much shorter time. Piglets are born after 115 days of gestation with some of their teeth erupted that must after weaning meet the mechanical demands of their omnivorous diet without failure.

View Article and Find Full Text PDF

Osteopontin (OPN) is a non-collagenous protein involved in biomineralization of bone tissue. Beyond its role in biomineralization, we show that osteopontin is essential to the quality of collagen fibrils in bone. Transmission electron microscopy revealed that, in Opn tissue, the organization of the collagen fibrils was highly heterogeneous, more disorganized than WT bone and comprised of regions of both organized and disorganized matrix with a reduced density.

View Article and Find Full Text PDF

Enzymatic collagen cross-linking has been shown to play an important role in the macroscopic elastic and plastic deformation of bone across ages. However, its direct contribution to collagen fibril deformation is unknown. The aim of this study is to determine how covalent intermolecular connections from enzymatic collagen cross-links contribute to collagen fibril elastic and plastic deformation of adults and children's bone matrix.

View Article and Find Full Text PDF

Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle.

View Article and Find Full Text PDF

The nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions.

View Article and Find Full Text PDF

Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom-up approach.

View Article and Find Full Text PDF

Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links.

View Article and Find Full Text PDF

Background: Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially responds to androgen blockade strategies, it often becomes castration-resistant (CRPC for Castration Resistant Prostate Cancer).

View Article and Find Full Text PDF

In the treatment of postmenopausal osteoporosis (PMOP), the use of alendronate (ALN) leads to a decrease in the risk of vertebral and nonvertebral fractures. To explore the possible adverse effects of prolonged ALN therapy, we studied the effects of 8 ± 2 years (6-10 years) of ALN treatment on the iliac cortical bone mineral and collagen quality and micromechanical properties; by design, our study examined these parameters, independent of the degree of mineralization. From six ALN-treated and five age-matched untreated PMOP women, 153 bone structural units have been chosen according their degree of mineralization to obtain the same distribution in each group.

View Article and Find Full Text PDF

Bone metastasis is a complication occurring in up to 70% of advanced breast cancer patients. The estrogen receptor-related receptor alpha (ERRα) has been implicated in breast cancer and bone development, prompting us to examine whether ERRα may function in promoting the osteolytic growth of breast cancer cells in bone. In a mouse xenograft model of metastatic human breast cancer, overexpression of wild-type ERRα reduced metastasis, whereas overexpression of a dominant negative mutant promoted metastasis.

View Article and Find Full Text PDF

Previous studies have shown that the mechanical properties of trabecular bone are determined by bone volume fraction (BV/TV) and microarchitecture. The purpose of this study was to explore other possible determinants of the mechanical properties of vertebral trabecular bone, namely collagen cross-link content, microdamage, and mineralization. Trabecular bone cores were collected from human L2 vertebrae (n = 49) from recently deceased donors 54-95 years of age (21 men and 27 women).

View Article and Find Full Text PDF