Publications by authors named "Baptiste Darbois Texier"

Antibubbles are ephemeral objects composed of a liquid drop encapsulated by a thin gas shell immersed in a liquid medium. When the drop is made of a volatile liquid and the medium is superheated, the gas shell inflates at a rate governed by the evaporation flux from the drop. This thermal process represents an alternate strategy for delaying the antibubble collapse.

View Article and Find Full Text PDF

Pressurized membranes are usually used for low cost structures (e.g., inflatable beds), impact protections (e.

View Article and Find Full Text PDF

We consider the penetration dynamics of a vertical cylinder into a dry granular medium subjected to successive impacts. The depth of the impactor below the free surface z_{N} first evolves linearly with the impact number N and then follows a power-law evolution z_{N}∝N^{1/3}. The depth reached by the cylinder after a given number of impacts is observed to increase with the impact energy, but to decrease with its diameter and the density of the granular medium.

View Article and Find Full Text PDF

The development of highly compliant materials and actuators has enabled the design of soft robots that can be applied in rescue operations, in secure human-robot interactions, to manipulate fragile devices or objects, and for robot locomotion within complex environments. To develop reliable solutions for soft robotics applications, devices with the ability to deform and change shape are required, which must be equipped with appropriate sensors capable of withstanding large deformations at suitable speeds and respond repeatedly. This work presents a methodology to build strain sensors made of sensitive, thin, and conductive channels printed inside a soft matrix, using three-dimensional printing.

View Article and Find Full Text PDF

This study investigates theoretically and numerically the propulsive sliding of a slender body. The body sustains a transverse and propagative wave along its main axis, and undergoes anisotropic friction caused by its surface texture sliding on the floor. A model accounting for the anisotropy of frictional forces acting on the body is implemented.

View Article and Find Full Text PDF

The physical mechanisms that bring about the propulsion of a rotating helix in a granular medium are considered. A propulsive motion along the axis of the rotating helix is induced by both symmetry breaking due to the helical shape, and the anisotropic frictional forces undergone by all segments of the helix in the medium. Helix dynamics is studied as a function of helix rotation speed and its geometrical parameters.

View Article and Find Full Text PDF

Non-cohesive materials such as sand, dry snow or cereals are encountered in various common circumstances, from everyday situations to industry. The process of digging into these materials remains a challenge to most animals and machines. Within the animal kingdom, different strategies are employed to overcome this issue, including excavation methods used by ants, the two-anchor strategy employed by soft burrowers such as razor-clams, and undulatory motions exhibited by sandfish lizards.

View Article and Find Full Text PDF

We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium.

View Article and Find Full Text PDF

Leaves are the organs that intercept light and create photosynthesis. Efficient light interception is provided by leaves oriented orthogonal to most of the sun rays. Except in the polar regions, this means orthogonal to the direction of acceleration due to gravity, or simply horizontal.

View Article and Find Full Text PDF