Publications by authors named "Bappoo N"

Introduction: The complex arborization of the feto-placental vasculature is crucial for optimal fetal nutrition, waste exchange and ultimately, development. Ethical and experimental limitations constrain research into the human placenta, hence experimental animal models such as mice and rats, are crucial to understand placental function. It is unclear how well the mouse and rat feto-placental vascular structure emulates human.

View Article and Find Full Text PDF

Background: Low shear stress has been implicated in abdominal aortic aneurysm (AAA) expansion and clinical events. We tested the hypothesis that low shear stress in AAA at baseline is a marker of expansion rate and future aneurysm-related events.

Methods: Patients were imaged with computed tomography angiography at baseline and followed up every 6 months >24 months with ultrasound measurements of maximum diameter.

View Article and Find Full Text PDF

Adequate development of the feto-placental circulation is critical for placental exchange function and healthy fetal growth. Understanding the structure of this circulation and how it informs fetal outcomes is important both in the human placenta, and the rodent, a purported comparative experimental model. Vascular casting and micro-CT imaging approaches enable detailed quantification of the complex vascular relationships in the feto-circulation, and provide detailed data to parameterise in silico models.

View Article and Find Full Text PDF

The placenta uniquely develops to orchestrate maternal adaptations and support fetal growth and development. The expansion of the feto-placental vascular network, in part, underpins function. However it is unclear how vascular development is synergistically influenced by hemodynamics and how impairment may lead to fetal growth restriction (FGR).

View Article and Find Full Text PDF

Objective: To test whether aneurysm biomechanical ratio (ABR; a dimensionless ratio of wall stress and wall strength) can predict aneurysm related events.

Methods: In a prospective multicentre clinical study of 295 patients with an abdominal aortic aneurysm (AAA; diameter ≥ 40 mm), three dimensional reconstruction and computational biomechanical analyses were used to compute ABR at baseline. Participants were followed for at least two years and the primary end point was the composite of aneurysm rupture or repair.

View Article and Find Full Text PDF

The placenta is a transient organ which develops during pregnancy to provide haemotrophic support for healthy fetal growth and development. Fundamental to its function is the healthy development of vascular trees in the feto-placental arterial network. Despite the strong association of haemodynamics with vascular remodelling mechanisms, there is a lack of computational haemodynamic data that may improve our understanding of feto-placental physiology.

View Article and Find Full Text PDF