Marine biofouling by the highly invasive Asian date mussel, Musculista senhousia (Benson), has caused devastating ecological and economic consequences in most coastal seas. Acute and short-term exposure experiments have demonstrated the susceptibility of mussel byssus - a holdfast structure by which mussels strongly adhere to underwater substrates, to pH. Yet, the influence of long-term exposures, especially across multiple generations, is largely unknown.
View Article and Find Full Text PDFOcean acidification and marine biofouling, which may interact in the future, pose two major threats to global coastal ecosystems. Yet, the fate of highly invasive fouling species in a rapidly acidifying ocean remains poorly understood, due to lack of information on multigenerational consequences at different levels of biological organization. Here, we investigated antioxidant responses of the mussel, Musculista senhousia, a swiftly spreading invasive fouling species in global coastal waters, following transgenerational exposure to elevated pCO.
View Article and Find Full Text PDFMarine biofouling by the swiftly spreading invasive mussel (Musculista senhousia) has caused serious ecological and economic consequences in the global coastal waters. However, the fate of this highly invasive fouling species in a rapidly acidifying ocean remains unknown. Here, we demonstrated the impacts of ocean acidification within and across generations, to understand whether M.
View Article and Find Full Text PDF