Publications by authors named "Baoyun Ye"

The combustion performance of composite solid propellants (CSPs) significantly affects their application in the field of military and civil aircraft. Ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) composite propellants are one of the common CSPs, and their combustion performance is mainly affected by AP thermal decomposition. In this work, a simple strategy was put forward to effectively construct MXene-supported vanadium pentoxide nanocomposites (MXene/VO, MXV).

View Article and Find Full Text PDF

Context: CL-20/DNDAP cocrystal is a promising new type of explosive with exceptional energy density and detonation parameters. However, compared to TATB, FOX-7 and other insensitive explosives, it still has higher sensitivity. In order to decrease the sensitivity of CL20/DNDAP cocrystal explosive, in this article, a CL20/DNDAP cocrystal model was established, and six different types of polymers, including butadiene rubber (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), hydroxyl-terminated polybutadiene (HTPB), fluoropolymer (F), and polyvinylidene difluoride (PVDF), were added to the three cleaved surfaces of (1 0 0), (0 1 0) and (0 0 1) to obtain polymer-bonded explosives (PBXs).

View Article and Find Full Text PDF

The crystal and molecular structures, intermolecular interactions, and energy of CL-20, HATO, and FOX-7 were comparatively predicted based on molecular dynamic (MD) simulations. By comparison, the 2D fingerprint plot, Hirshfeld surface, reduced density gradient isosurface, and electrostatic potential surface were studied to detect the intermolecular interactions. Meanwhile, the effects of vacuum and different solvents on the crystal habit of CL-20, HATO, and FOX-7 were studied by AE and MAE model, respectively.

View Article and Find Full Text PDF

Colloidal lithography provides a rapid and low-cost approach to construct 2D periodic surface nanostructures. However, an impressive demonstration to prepare large-area colloidal template is still missing. Here, a high-efficient and flexible technique is proposed to fabricate self-assembly monolayers consisting of orderly-packed polystyrene spheres at air/water interface via ultrasonic spray.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations have been applied to investigate 1, 1-diamino-2, 2-dinitroethene (FOX-7) crystal and FOX-7 (011)-based polymer-bonded explosives (PBXs) with four typical polymers, polyethylene glycol (PEG), fluorine-polymer (F), ethylene-vinyl acetate copolymer (EVA) and ester urethane (ESTANE5703) under COMPASS force field. Binding energy ( ), cohesive energy density (CED), initiation bond length distribution, RDG analysis and isotropic mechanical properties of FOX-7 and its PBXs at different temperatures were reported for the first time, and the relationship between them and sensitivity. Using quantum chemistry, FOX-7 was optimized with the four polymers at the B3LYP/6-311++G(d,p) level, and the structure and RDG of the optimized composite system were analysed.

View Article and Find Full Text PDF

Prepared composite materials based on [ZnO(benzene-1,4-dicarboxylate)] (MOF-5) and graphene oxide (GO) via a simple green solvothermal method, at which GO was used as platform to load MOF-5, and applied to the thermal decomposition of AP. The obtained composites were characterized by various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption, Fourier transform infrared (FT-IR), differential scanning calorimetry and thermalgravimetric (DSC-TG). The analyses confirmed that the composite material (GO@) MOF-5 can not only improve the decomposition peak temperature of AP from the initial 409.

View Article and Find Full Text PDF

Multi-scale ultrafine 1,1-diamino-2,2-dinitroethene (FOX-7) samples with different particle size were fabricated and specifically, nano-FOX-7 was successfully prepared by a green mechanophysical milling method. All samples were characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Impact and friction sensitivities of the samples were tested and thermal analysis was performed by differential scanning calorimetry (DSC) and thermogravimetry (TG).

View Article and Find Full Text PDF

The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system.

View Article and Find Full Text PDF

A one-step method which involves exfoliating graphite materials (GIMs) off into graphene materials (GEMs) in aqueous suspension of CL-20 and forming CL-20/graphene materials (CL-20/GEMs) composites by using ball milling is presented. The conversion of mixtures to composite form was monitored by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The impact sensitivities of CL-20/GEM composites were contrastively investigated.

View Article and Find Full Text PDF