DNA double-strand breaks (DSBs) yield highly determines radiotherapy efficacy. However, improving the inherent radiosensitivity of tumor DNA to promote radiation-induced DSBs remains a challenge. Using theoretical and experimental models, the underexplored impact of Z-DNA conformations on radiosensitivity, yielding higher DSBs than other DNA conformations, is discovered.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
New binary carbon composites (GDY-NCNTs and GDY-CNTs) with a three-dimensional porous structure, which are synthesized by an in situ growth method, are adopted in this article. The GDY-NCNTs composites exhibit excellent specific capacitance performance (679 F g, 2 mV s, 139% increase compared to GDY-CNTs) and good cycling stability (with a capacity retention rate of up to 116% after 10000 cycles). The three-dimensional porous structure not only promotes ion transfer and increases the effective specific surface area to improve its specific capacitance performance but also adapts to the volume expansion and contraction during the charging and discharging process to improve its cycling stability.
View Article and Find Full Text PDFQuasi-2D perovskites show great potential as photovoltaic devices with superior stability, but the power conversion efficiency (PCE) is limited by poor carrier transport. Here, it is simultaneously affected the hole transport layer (HTL) and the perovskite layer by incorporating pyridine-based materials into poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) to address the key problem above in 2D perovskites. With this approach, the enhanced optoelectronic performance of the novel PEDOT:PSS is due to electron transfer between the additives and PEDOT or PSS, as well as a dissociation between PEDOT and PSS based on experimental and theoretical studies, which facilitates the charge extraction and transfer.
View Article and Find Full Text PDFPhoton radiotherapy is a common tool in the armory against tumors, but it is limited by hypoxia-related radioresistance of tumors and radiotoxicity to normal tissues. Here, we constructed a spatiotemporally controlled synergistic therapy platform based on the heterostructured CuO@Graphdiyne (CuO@GDY) nanocatalyst for simultaneously addressing the two key problems above in radiotherapy. First, the formed Z-scheme CuO@GDY heterojunction performs highly efficient and controlled photocatalytic O evolution upon near-infrared (NIR) laser stimulation for tumor hypoxia alleviation.
View Article and Find Full Text PDFAs one of the typical carbon nanomaterials, graphdiyne (GDY) with unique chemical, physical, and electronic properties has a great potential in various fields. Although it is an important member of carbon nanozymes, the research on its intrinsic enzyme mimetic properties and applications is still limited. Herein, graphdiyne oxide quantum dots (GDYO QDs) have been synthesized through oxidative cleavage, which exhibit enhanced peroxidase-like activity with lower and higher than those of most carbon-based nanozymes.
View Article and Find Full Text PDFA new class of transparent graphene electrode based organic-inorganic halide perovskite photodetectors with broad spectral response is developed. These ultrasensitive devices exhibit high ON/OFF current ratio, high linear dynamic range, broad spectral range, excellent detection for weak light and easy fabrication with low-cost. Their semi-transparent feature and distinct photodetecting function for both sides would provide new applications affecting our daily lives.
View Article and Find Full Text PDFThe core-shell structure of endohedral fullerene-based anisotropic magnetic molecules of high spin with long coherence time could help scale up quantum systems. In this research, by amination of Gd@C with morpholine, three derivatives are functionalized with 5, 7 and 9 morpholine groups providing an interesting model to investigate the relationship between the quantum coherence and the spin environment. The original radical located on the carbon cage is successfully quenched, affording a quantum phase memory times ( ) over 5 μs at 5 K.
View Article and Find Full Text PDFThe effects of dangling bonds on the magnetic properties of graphene oxide (GO) were studied experimentally by creating nanoholes on GO nanosheets. GO with more nanoholes (MHGO) and less nanoholes (LHGO) on graphene oxide nanosheets were synthesized. Results showed that nanoholes brought new dangling bonds for GO and the increase of the dangling bonds on GO could be adjusted by the amounts of the nanoholes on GO.
View Article and Find Full Text PDFIn this work, a novel chelating adsorbent, 2, 4-dithiobiuret-reduced graphene oxide composite (DTB-RGO), was synthesized and worked as an electrochemical sensor for the determination of Pb. X-ray photoemission spectroscopy, Raman spectroscopy and Fourier transform-infrared spectroscopy were used to confirm the successful doping of the aminothiourea groups into the GO nanosheets through amide bond. The electrode modified with DTB-RGO shows two wide linear range 0.
View Article and Find Full Text PDFThe photoluminescence of lanthanide ions inside fullerenes is usually very weak due to the quenching effect of the fullerene cage. In the case of Er@C, the near-infrared emission from the Er ion is completely quenched by the C fullerene cage. It remains challenging to turn on the photoluminescence of Er@C and other monometallofullerenes.
View Article and Find Full Text PDFNeurodegenerative diseases have become a huge challenge to public health, such as Alzheimer's and Parkinson's diseases. Microglia driving inflammation in the central nervous system (CNS) has been involved in the pathological process of these disorders and could be novel therapy target. However, traditional anti-inflammatory drugs are not effective in alleviating neuroinflammation.
View Article and Find Full Text PDFA flexible hot-film sensor array for wall shear stress, flow separation, and transition measurement has been fabricated and implemented in experiments. Parylene C waterproof layer is vapor phase deposited to encapsulate the sensor. Experimental studies of shear stress and flow transition on a flat plate have been undertaken in a water tunnel with the sensor array.
View Article and Find Full Text PDFTissue injuries are inevitably accompanied with immune responses. Understanding the effects of biomaterials on immunology regulation is critical for biomaterial development and tissue regeneration. Inflammatory cytokines secreted from macrophages promote the migration of mesenchymal stem cells (MSCs) to the damaged tissue sites and their subsequent participation in tissue repair.
View Article and Find Full Text PDFEndocytosis is an important pathway to regulate the metabolism of low-density lipoprotein (LDL) in cells. At the same time, engineering nanoparticles (ENPs) enter the cell through endocytosis in biomedical applications. Therefore, a crucial question is whether the nanoparticles involved in endocytosis could impact the natural metabolism of LDL in cells.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2018
Dual mode imaging technology is widely developed to achieve the early-stage precision cancer diagnosis. Here we designed a dual-modal magnetic resonance/near infrared fluorescence optical imaging contrast agent (GdF-SS-NIR783) with the fluorescence activatable and safer gadofullerene. The nanoprobes were fabricated by conjugating the gadofullerene derivatives with a NIR fluorescence imaging agent (NIR783) via the disulfide bond.
View Article and Find Full Text PDFWith their intriguing structures and properties, metallofullerenols have attracted considerable attention in biological and medical applications. Due to the increasing biomedical interest, effective detection methods are important to monitor and control metallofullerenols. However, the detection of metallofullerenols becomes very difficult after polyhydroxylated modification due to the lack of detectable features.
View Article and Find Full Text PDFHerein, A549 tumor cell proliferation was confirmed to be positively dependent on the concentration of Fe or transferrin (Tf). Gd@C (OH) or C (OH) effectively inhibited the iron uptake and the subsequent proliferation of A549 cells. The conformational changes of Tf mixed with FeCl , GdCl , C (OH) or Gd@C (OH) were obtained by SAXS.
View Article and Find Full Text PDFUnlabelled: Adoptive immunotherapy is a highly effective approach for cancer treatment. Several potential adoptive immunotherapies have high (though reversible) toxicities with disappointing results. Polyhydroxylated fullerenols have been demonstrated as promising antitumor drugs with low toxicities.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
July 2015
Indene-C70 derivatives were synthesized, including indene-C70 mono-adduct (IC70MA), indene-C70 bis-adduct (IC70BA) and indene-C70 tris-adduct (IC70TA). All as-prepared fullerene adducts are in fact a mixture of isomers. The IC70BA mixture was further separated by high-performance liquid chromatography (HPLC) and two different IC70BA isomers were obtained.
View Article and Find Full Text PDFDFT calculations consistently suggest that a lanthanide will sit on either the 6/6 bond inside C60 having a divalent state or the hexagonal center having a trivalent state. Some lanthanides can stay only above the 6/6 bond inside C60 to form stabilized structures, despite the greatly reduced metal-cage coordination numbers. The preference for C-C bonds by a divalent metal has been confirmed by revisiting the structures of Yb@C2v(3)-C80, Yb@Cs(6)-C82 and Yb@C2v(9)-C82, for which the calculations suggest that the Yb atoms are indeed situated above the C-C bonds, close to the reported structures obtained by single crystal XRD experiments.
View Article and Find Full Text PDFCisplatin is a commonly used chemotherapeutic drug in cancer treatment, whereas Gd@C82(OH)22 is a new nanomaterial anti-tumor agent. In this study, we determined intracellular Gd@C82(OH)22 and cisplatin after treatment of Hela and 16HBE cells by single cell inductively coupled plasma-mass spectrometry (SC-ICP-MS), which could provide quantitative information at a single-cell level. The cell digestion method validated the accuracy of the SC-ICP-MS.
View Article and Find Full Text PDFThe contemporary use of nanomedicines for cancer treatment has been largely limited to serving as carriers for existing therapeutic agents. Here, we provide definitive evidence that, the metallofullerenol nanomaterial Gd@C82(OH)22, while essentially not toxic to normal mammary epithelial cells, possesses intrinsic inhibitory activity against triple-negative breast cancer cells. Gd@C82(OH)22 blocks epithelial-to-mesenchymal transition with resultant efficient elimination of breast cancer stem cells (CSCs) resulting in abrogation of tumour initiation and metastasis.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
July 2014
A new electron transfer dyad, covalently linked C70-corrole, was prepared via C70 and 10-(4-Formylaryl)-5,15-bis(pentafluorophenyl). The structures and the properties of the new material were investigated by HPLC, MALDI-TOF-MS, UV-Vis-NIR spectroscopy, NMR, fluorescence analysis and CV/DPV. The free-energy of C70-corrole calculated by employing the redox potentials and singlet excited-state energy suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity, which agreed with the results of the theoretical calculation.
View Article and Find Full Text PDFMacrophages can be recruited to tumor tissues and play a supportive role in the invasion microenvironment. Since nanoparticles can be easily endocytosed by this kind of cell, the advances in nanotechnology offer a new sight to target macrophages in tumor tissues for diminishing harmful phenotypes. In the xenograft mouse model, we found that metallofullerol Gd@C82(OH)22 can not only reduced the macrophage density in the tumor tissue, but also decreased the expression of matrix metalloproteinase-9 produced by this kind of cell.
View Article and Find Full Text PDFPolyhydroxylated fullerenols especially gadolinium endohedral metallofullerenols (Gd@C82(OH)22) are shown as a promising agent for antitumor chemotherapeutics and good immunoregulatory effects with low toxicity. However, their underlying mechanism remains largely unclear. We found for the first time the persistent uptake and subcellular distribution of metallofullerenols in macrophages by taking advantages of synchrotron-based scanning transmission X-ray microscopy (STXM) with high spatial resolution of 30 nm.
View Article and Find Full Text PDF