Publications by authors named "Baoying Lv"

Catalysts with high efficiency for the oxygen reduction reaction (ORR) play a vital important role in fuel cells and metal-air batteries. Herein, Ru nanoparticles are highly dispersed on functional multi-walled carbon nanotubes (MWCNTs) by a facile impregnation-reduction method. The particle sizes of Ru nanoparticles are simply and effectively adjusted by the concentration of the Ru precursor.

View Article and Find Full Text PDF

A hydrothermal electrocatalytic oxidation (HTECO) method is adopted to treat the biorefractory and toxic 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides wastewater on nano-Pt/Ti electrode in the existence of H2O2. Comparisons for the removal of 2,4-D and total organic carbon (TOC) have been carried out between HTECO with individual electrochemical oxidation (EO) and hydrothermal catalytic oxidation (HTCO), showing that high mineralization efficiency was obtained in HTECO process. The possible factors resulting in the high removal efficiency in HTECO process have been studied by investigating the properties of the electrode and solution in hydrothermal condition, the amount of active radicals, the decay kinetic, and evolution of main intermediates of 2,4-D.

View Article and Find Full Text PDF

A green hydrothermally enhanced electrochemical oxidation (HTEO) technique is developed to treat the high concentration refractory perfluorooctanoic acid (PFOA) wastewater on boron-doped diamond (BDD) film electrode. Results show that HTEO can demonstrate higher degradation efficiency for PFOA than the normal electrochemical oxidation (EO) process, with the removal of PFOA, total organic carbon (TOC), and organic fluorine in the HTEO process increasing by 1.1, 1.

View Article and Find Full Text PDF

A novel TiO(2) nanotube array/CdS nanoparticle/ZnO nanorod (TiO(2) NT/CdS/ZnO NR) photocatalyst was constructed which exhibited a wide-absorption (200-535 nm) response in the UV/Vis region and was applied for the photoelectrocatalytic (PEC) degradation of dye wastewater. This was achieved by chemically assembling CdS into the TiO(2) NTs and then constructing a ZnO NR layer on the TiO(2) NT/CdS surface. Scanning electron microscopy (SEM) results showed that a new structure had been obtained.

View Article and Find Full Text PDF

Aqueous aromatic hydrocarbons are chemically stable, high toxic refractory pollutants that can only be oxidized to phenols and quinone on either Pt or traditional PbO(2) electrodes. In this study, a novel method for the electrochemical incineration of benzene homologues on superhydrophobic PbO(2) electrode (hydrophobic-PbO(2)) was proposed under mild conditions. Hydrophobic-PbO(2) can achieve the complete mineralization of aromatic hydrocarbons and exhibit high removal effect, rapid oxidation rate, and low energy consumption.

View Article and Find Full Text PDF

A new two-step process involving the electrocatalytic (EC) pre-oxidation and the following photoelectrocatalytic synergistic (PEC) oxidation is proposed to treat the high concentration and high-chroma methyl orange dye wastewater, which cannot be degraded by photocatalytic oxidation (PC) directly. The SnO(2)/TiO(2)-NTs/Ti electrode simultaneously possessing the outstanding PC oxidation properties of TiO(2)-NTs and the excellent EC oxidation abilities of the Sb doped SnO(2) was synthesized by impregnating Sb doped SnO(2) nanoparticles into TiO(2)-NTs. In the pre-oxidation process as the first stage, the high-color dye wastewater is decolorized with electrochemical method to some extent.

View Article and Find Full Text PDF

In this paper, a synergistic combination of the biochemical treatment and electrochemical oxidation (SBEO) of landfill leachate with sectional treatment on a boron-doped diamond (BDD) electrode is proposed. The first stage involves the synergistic system of biochemical treatment and electrochemical oxidation. Then, the second stage is followed by individual biochemical treatment.

View Article and Find Full Text PDF

A microwave-enhanced catalytic wet peroxide oxidation (MW-CWPO) technology was investigated to treat a high concentration of p-chlorophenol wastewater under a mild condition. The MW-CWPO experiments were carried out in a microwave autoclave using copper(II) oxide (CuO)-loaded active carbon as a catalyst. The p-chlorophenol was directly ring-opened within 5 minutes at 343 K and 0.

View Article and Find Full Text PDF

A novel PbO(2) electrode with a high oxygen evolution potential (OEP) and excellent electrochemical oxidation performance is prepared to improve the traditional PbO(2) electrode, which is modified by changing the microstructure and wetting ability. A middle layer of TiO(2) nanotubes (NTs) with a large surface area is introduced on Ti substrate, and a small amount of Cu is predeposited at the bottom of TiO(2)-NTs. The modification will improve the electrochemical performance by enhancing the loading capacity of PbO(2) and the combination between PbO(2) and Ti substrate.

View Article and Find Full Text PDF