The recombination of photoinduced carriers hampers the photocatalysis process. Construction of the heterojunction and built-in piezoelectric field boosts the separation of electrons and holes. Herein, a novel magnetic recyclable SnFeO(SFO)/ZnO composite with enhanced photocatalytic performance based on the dual electric field synergism was proposed for the first time.
View Article and Find Full Text PDFNear-infrared (NIR) light, accounting for approximately 50 % of solar light, cannot directly excite photocatalytic reactions due to its lower energy, which severely restricts the photocatalytic solar energy conversion efficiency and hinders the application of photocatalysis. To overcome this dilemma, some viable strategies have been proposed to harness NIR light for enhancing photocatalytic performance based on material structure, composition, and function designs, and obvious progresses have been witnessed. In this review, the basic principles and representative advances in photocatalyst heterojunction designs (including p-n junctions, S-scheme, Z-scheme, and type-ІІ heterojunctions), photocatalyst composition and function designs (such as preparing rare earth element doped upconversion photocatalysts, rare earth upconversion photocatalytic hybrids and triplet-triplet annihilation upconversion photocatalytic composites), and photothermal-photocatalytic bifunction designs for NIR light utilization are exclusively scrutinized.
View Article and Find Full Text PDFPhotocatalysis offers a direct, yet robust, approach to eradicate pathogenic bacteria. However, the practical implementation of photocatalytic disinfection faces a significant challenge due to low-efficiency photogenerated carrier separation and transfer. Here, we present an effective approach to improve photocatalytic disinfection performance by exploiting the pyro-phototronic effect through a synergistic combination of pyroelectric properties and photocatalytic processes.
View Article and Find Full Text PDFThe past several years has witnessed significant progress in enhancing photocatalytic performance via robust electric and magnetic fields' modulation to promote the separation and transfer of photoexcited carriers, and phase control at reactive interface to lower photocatalytic reaction energy barrier and facilitate mass transfer. These three research directions have received soaring attention in photocatalytic field. Herein, recent advances in photocatalysis modulated by electric field (i.
View Article and Find Full Text PDFUtilization of low-energy photons for efficient photocatalysis remains a challenging pursuit. Herein, a strategy is reported to boost the photocatalytic performance, by promoting low-energy photons dual harvest through bimodal surface plasmon resonance (SPR)-enhanced synergistically upconversion and pyroelectricity. It is achieved by introducing triplet-triplet annihilation upconversion (TTA-UC) materials and plasmonic material (Au nanorods, AuNRs) into composite fibers composed of pyroelectric substrate (poly(vinylidene fluoride)) and photocatalyst Cd Zn S.
View Article and Find Full Text PDFMass transfer is an essential factor determining photocatalytic performance, which can be modulated by fluid field via manipulating the kinetic characteristics of photocatalysts and photocatalytic intermediates. Past decades have witnessed the efforts and achievements made in manipulating mass transfer based on photocatalyst structure and composition design, and thus, a critical survey that scrutinizes the recent progress in this topic is urgently necessitated. This review examines the basic principles of how mass transfer behavior impacts photocatalytic activity accompanying with the discussion on theoretical simulation calculation including fluid flow speed and pattern.
View Article and Find Full Text PDFRecently, silver nanoparticles (AgNPs) have been widely applied in sterilization due to their excellent antibacterial properties. However, AgNPs require rigorous storage conditions because their antibacterial performances are significantly affected by environmental conditions. Instant fabrication provides a remedy for this drawback.
View Article and Find Full Text PDFThe piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals).
View Article and Find Full Text PDFThe intrinsic internal electric field in a ferroelectric photocatalyst is beneficial for improving the photocatalytic properties because of its positive effect on the separation and migration of photogenerated carriers. However, this kind of internal electric field is static and easily saturated by inner and outer shielding effects, seriously restricting its potential in photocatalysis. To overcome this problem, a sustainable internal electric field was introduced into photocatalysis based on piezoelectric and pyroelectric effect, which exhibits good capability in consistently boosting photocatalytic activity, thus becoming a hot research topic.
View Article and Find Full Text PDFInfrared light, more than 50% of the solar light energy, is long-termly ignored in the photocatalysis field due to its low photon energy. Herein, infrared-light-responsive photoinduced carriers driver is first constructed taking advantage of pyroelectric effect for enhancing photocatalytic hydrogen evolution. In order to give full play to its role, the photocatalytic reaction is localized on the surface and interface of the composite based on a new semi-immersion type heat collected photocatalytic microfiber system.
View Article and Find Full Text PDFElement doping has been extensively attempted to develop visible-light-driven photocatalysts, which introduces impurity levels and enhances light absorption. However, the dopants can also become recombination centers for photogenerated electrons and holes. To address the recombination challenge, we report a gradient phosphorus-doped CdS (CdS-P) homojunction nanostructure, creating an oriented built-in electric-field for efficient extraction of carriers from inside to surface of the photocatalyst.
View Article and Find Full Text PDF