Unalloyed titanium boasts an impressive combination of ductility, biocompatibility and corrosion resistance. However, its strength properties are moderate, which constrains its use in demanding structural applications. Traditional alloying methods used to strengthen titanium often compromise ductility and tend to be costly and energy intensive.
View Article and Find Full Text PDFOwing to sluggish reaction kinetics and high potential, oxygen evolution reaction (OER) electrocatalysts face a trade-off between activity and stability. Herein, an innovative topological strategy is presented for preparing 2D multimetallic (oxy)hydroxide, including ternary CoFeZn, quaternary CoFeMnZn, and high-entropy CoFeMnCuZn. The key to the synthesis lies in using Ca-rich brownmillerite oxide as a precursor, which possesses inherent structural flexibility enabling tailored elemental adjustments and topologically transforms from a point-shared structure of metal-oxygen octahedrons into an edge-shared structure under alkaline conditions.
View Article and Find Full Text PDFThe facile and rapid design of efficient oxygen evolution reaction (OER) catalysts holds paramount significance for energy conversion devices, such as water electrolyzers and fuel cells. Despite substantial progress in catalyst synthesis and performance exploration, the design and selection processes remain inefficient. In this context, we integrate patent analysis with catalyst design, leveraging the scholarly research functionalities within patent analyses to aid in the design and synthesis of a NiFeRu-carbon catalyst as a high-performance OER catalyst.
View Article and Find Full Text PDFThe oxygen evolution reaction (OER) plays a vital role in renewable energy technologies, including in fuel cells, metal-air batteries, and water splitting; however, the currently available catalysts still suffer from unsatisfactory performance due to the sluggish OER kinetics. Herein, we developed a new catalyst with high efficiency in which the dynamic exchange mechanism of active Fe sites in the OER was regulated by crystal plane engineering and pore structure design. High-density nanoholes were created on cobalt hydroxide as the catalyst host, and then Fe species were filled inside the nanoholes.
View Article and Find Full Text PDFThe highly efficient bifunctional catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is the key to achieving high-performance rechargeable Zn-air batteries. Non-precious-metal single-atom catalysts (SACs) have attracted intense interest due to their low cost and very high metal atomic utilization; however, high-activity bifunctional non-precious-metal SACs are still rare. Herein, we develop a new nanospace-confined sulfur-enamine copolymerization strategy to prepare a new type of bifunctional Mo SACs with O/S co-coordination (Mo-OS-C) supported on the multilayered, hierarchically porous hollow tubes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Electrocatalytic water splitting is an attractive way to generate hydrogen and oxygen for obtaining clean energy. Oxygen evolution reaction (OER), as one of the half reactions of oxygen evolution, is kinetically unfavorable involving the transfer of four electrons. Hydroxides are promising candidates for efficient OER electrocatalysts toward water splitting because of their high intrinsic activity and active surface area.
View Article and Find Full Text PDFTransition metal (such as Fe, Co, and Ni) oxides are excellent systems in the oxygen evolution reaction (OER) for the development of non-noble-metal-based catalysts. However, direct experimental evidence and the physical mechanism of a quantitative relationship between physical factors and oxygen evolution activity are still lacking, which makes it difficult to theoretically and accurately predict the oxygen evolution activity. In this work, a data-driven method for the prediction of overpotential (OP) for (Ni-Fe-Co)O catalysts is proposed via machine learning.
View Article and Find Full Text PDFFeC modified by the incorporation of carbon materials offers excellent electrical conductivity and interfacial lithium storage, making it attractive as an anode material in lithium-ion batteries. In this work, we describe a time- and energy-saving approach for the large-scale preparation of FeC nanoparticles embedded in mesoporous carbon nanosheets (FeC-NPs@MCNSs) by solution combustion synthesis and subsequent carbothermal reduction. FeC nanoparticles with a diameter of ∼5 nm were highly crystallized and compactly dispersed in mesoporous carbon nanosheets with a pore-size distribution of 3-5 nm.
View Article and Find Full Text PDFThe oxygen evolution reaction (OER) is a key reaction in water splitting and metal-air batteries, and transition metal hydroxides have demonstrated the most electrocatalytic efficiency. Making the hydroxides thinner for more surface commonly fails to increase the active site number, because the real active sites are the edges. Up to now, the overpotentials of most state-of-the-art OER electrocatalysts at a current density of 10 mA cm (η ) are still larger than 200 mV.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
Owing to the scarcity of Pt, low-cost, stable, and efficient nonprecious metal-based electrocatalysts that can be applied in a wide pH range for the hydrogen evolution reaction (HER) are urgently required. Herein, a highly efficient and robust HER catalyst that is applicable at all pH values is fabricated, containing isolated Co-single atomic sites anchored in the self-supported WO arrays grown on Cu foam. At a current density of 10 mA cm, the HER overpotentials are 117, 105, and 149 mV at pH values of 0, 7, and 14, respectively, which are significantly lower than those of the undoped WO, suggesting superior electrocatalytic H-evolution activity at all pH values.
View Article and Find Full Text PDFPotassium-ion batteries are potential alternatives to lithium-ion batteries for large-scale energy storage considering the low cost and high abundance of potassium. However, it is challenging to obtain stable electrode materials capable of undergoing long-term potassiation/depotassiation due to the high accumulated stress associated with the huge volume variation of the electrode. Here, we simulate the von Mises stress distributions of four different carbon three-dimensional models under an isotropic initial stress by the finite element method and reveal the critical role of the structure of a hollow multihole bowl on the strain-relaxation behavior.
View Article and Find Full Text PDFSilver/polymer nanocomposites have made inroads into the fields of electronic devices, thermally conductive materials, antimicrobial agents and sensors. Here, we present the hydrothermal synthesis of a novel three-dimensional self-standing silver/crosslinked-poly(vinyl alcohol) (Ag/crosslinked-PVA) hybrid network constructed by linking three different subunits, namely, microfibers, nanowires and nanoparticles. One-dimensional crosslinked-PVA-based microfibers act as the skeleton of the sponge.
View Article and Find Full Text PDFFor the first time, bowl-like hollow carbon spheres (BHCSs) have been designed and fabricated by the combination of hydrothermal carbonization and soft templating. The obtained BHCSs exhibit well-defined shapes with the size ranging from 1 to 2 μm. As electrodes of electrochemical double layer capacitors they showed good performance.
View Article and Find Full Text PDFMesoporous graphite encapsulated FeC/Fe nanosheet composites have been synthesized by a facile template free method using ferric nitrate, glycine and glucose as raw materials. X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectrometer have been used to characterize the composites. The formation process and morphology of the products have been discussed in detail.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
Novel hollow porous VO/C nanoscrolls are synthesized by an annealing process with the VO/octadecylamine (ODA) nanoscrolls as both vanadium and carbon sources. In the preparation, the VO/ODA nanoscrolls are first achieved by a two-phase solvothermal method using ammonium metavanadat as the precursor. Upon subsequent heating, the intercalated amines between the vanadate layers in the VO/ODA nanoscrolls decompose into gases, which escape from inside the nanoscrolls and leave sufficient pores in the walls.
View Article and Find Full Text PDFA new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained.
View Article and Find Full Text PDF