Aim: Long intergenic noncoding RNAs are long noncoding transcripts from the intergenic regions of annotated protein-coding genes. The elevated expression of long noncoding RNA (lnRNA) LOC152742 has been found in tuberculosis infection yet its roles in antimycobacterial responses remain to be elucidated.
Patients And Methods: In this study, the expression levels of LOC152742 in sputum, plasma of normal individuals, active tuberculosis patients, obsolete tuberculosis patients, and individuals affected with bacillus Calmette-Guerin (BCG) were analyzed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and the sensitivity and specificity of the candidate biomarker LOC152742 were obtained.
Lithium sulfur (Li-S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li-S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon-sulfur composites.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
October 2015
Objective: To investigate the mechanism of the pulmonary injury in rats caused by chronic intermittent hypoxia (CIH) and to investigate the intervention effect of Edaravone.
Method: Ninety-six male Wistar rats were divided into four groups randomly: the control group (NC), chronic intermittent hypoxia group (CIH), chronic intermittent hypoxia normal saline matched group (NS), chronic intermittent hypoxia edaravone treatment group (NE). The four groups were also divided into 1, 2, 3, 4 W time subgroups, and each time subgroup had 6 rats.
A novel physically linked double-network (DN) hydrogel based on natural polymer konjac glucomannan (KGM) and synthetic polymer polyacrylamide (PAAm) has been successfully developed. Polyvinyl alcohol (PVA) was used as a macro-crosslinker to prepare the PVA-KGM first network hydrogel by a cycle freezing and thawing method for the first time. Subsequent introduction of a secondary PAAm network resulted in super-tough DN hydrogels.
View Article and Find Full Text PDFThe majority of human kidney stones are comprised of multiple calcium oxalate monohydrate (COM) crystals encasing a calcium phosphate nucleus. The physiochemical mechanism of nephrolithiasis has not been well determined on the molecular level; this is crucial to the control and prevention of renal stone formation. This work investigates the role of phosphate ions on the formation of calcium oxalate stones; recent work has identified amorphous calcium phosphate (ACP) as a rapidly forming initial precursor to the formation of calcium phosphate minerals in vivo.
View Article and Find Full Text PDFMotivated by the interest in an interfacial effect on crystallization behaviors and material properties of polymer nanocomposites, phase behaviors of a novel model system for polymer nanocomposite, 1-octadecanol/silica nanosphere composites (C18OH/SiO2), were studied by means of thermal analysis and wide-angle X-ray diffraction. Although a huge specific surface area of silica nanoparticles enlarges the surface-volume ratio of C18OH molecules, surface freezing phenomenon is not observed by DSC in the C18OH/SiO2 composites. While pure C18OH exhibits rotator RIV phase with molecules tilted with respect to the layer normal, the silica network favors and enhances untitled RII phase by disturbing the layering arrangement.
View Article and Find Full Text PDFThe confined phase behaviors of microencapsulated normal hexadecane/octadecane mixtures (abbreviated as m-C16/C18) have been investigated by combination of differential scanning calorimetry and in situ wide-angle X-ray scattering. The binary alkane mixtures confined in three-dimensional geometrical space demonstrate two novel crystallization features. The surface freezing is significantly enhanced after C16/C18 mixtures being encapsulated, and the surface monolayer formed is proved to be an ideal solid solution composed by C16 and C18.
View Article and Find Full Text PDFHydroxyapatite (HAP) participates in vertebral bone and tooth formation by a nonclassical hitherto unknown nucleation mechanism, in which amorphous precursors form and transform during long induction periods. Elucidation of the mechanism by which amorphous precursors assemble and transform is essential to understanding how hard tissues form in vivo and will advance the design and fabrication of new biomaterials. The combination of conductance and potentiometric techniques to monitor Ca-P mineral formation has given new insight into the mechanism of nucleation.
View Article and Find Full Text PDFThis work identifies carbonated hydroxyapatite (CAP) as the primary component of canine dental calculus, and corrects the long held belief that canine dental calculus is primarily CaCO3 (calcite). CAP is known to be the principal crystalline component of human dental calculus, suggesting that there are previously unknown similarities in the calcification that occurs in these two unique oral environments. In vitro kinetic experiments mimicking the inorganic components of canine saliva have examined the mechanisms of dental calculus formation.
View Article and Find Full Text PDFHow polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials.
View Article and Find Full Text PDFMechanically strong hydrogel-HAp composites have been successfully fabricated through in situ formation of hydroxyapatite (HAp) in a tough polyacrylamide (PAAm) hydrogel with a modified electrophoretic mineralization method. The pre-swelling of the PAAm hydrogels in CaCl buffer solutions makes the electrophoresis method able to produce large area (10 × 8 cm) hydrogel-HAp composites. At the same time the CaCl solution with different concentrations could control the HAp contents.
View Article and Find Full Text PDFMotor imagery training is considered as an effective training strategy for motor skill learning and motor function rehabilitation. However, compared with studies of the neural mechanism underlying motor imagery, neuroimaging examinations of motor imagery training are comparatively few. Using functional magnetic resonance imaging, we designed a 2-week motor imagery training experiment, including execution and imagery tasks, to investigate the effectiveness of motor imagery training on the improvement of motor performance, as well as the neural mechanism associated with motor imagery training.
View Article and Find Full Text PDFIn the present investigation, the crystallization and phase transition behaviours of normal alkane (n-docosane) in microcapsules with a mean diameter of 3.6 μm were studied by the combination of differential scanning calorimetry (DSC), temperature-dependent X-ray diffraction (XRD) and variable-temperature solid-state nuclear magnetic resonance (VT solid-state (13)C NMR). The DSC and VT solid-state (13)C NMR results reveal that a surface freezing monolayer is formed prior to the bulk crystallization of the microencapsulated n-docosane.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
The crystallization behavior of n-C(19)H(40)/SiO(2) nanosphere composites was investigated by a combination of differential scanning calorimetry (DSC) and temperature-dependent X-ray diffraction (XRD). Three kinds of confined alkanes with different solid-solid phase transition supercoolings and a surface (or interface) freezing monolayer of n-C(19)H(40) at the bulk liquid/SiO(2) interface were found in the composites at high SiO(2) loading. The surface freezing monolayer induces the chain packing of bulk alkanes by forming a 2D close-packed arrangement without long-range positional ordering in 3D space.
View Article and Find Full Text PDFThe condensed structure of normal alkane (n-alkane) mixtures in confined geometry is an interesting topic concerning the difference in crystallization behavior of odd and even alkanes. In the present work, the crystallization of mixtures of normal octadecane (n-C18H38) and normal nonadecane (n-C19H40) in microcapsules with narrow size distribution was investigated using the combination of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A surface freezing monolayer for microencapsulated n-C18H38, n-C19H40, and their mixture was detected by DSC, which for the mixture is a mixed homogeneous crystalline phase with continuous change in the composition.
View Article and Find Full Text PDFThe crystallization of binary n-alkane solid solution n-C(18)H(38)/n-C(19)H(40) = 90/10 (molar ratio) (abbreviated as C(18)/C(19) = 90/10) and the microencapsulated counterpart (abbreviated as m-C(18)/C(19) = 90/10) has been investigated by a combination of differential scanning calorimetry (DSC) and temperature-dependent X-ray diffraction (XRD). The solid-solid phase separation was obviously detected in C(18)/C(19) = 90/10 by XRD, which is absent in m-C(18)/C(19) = 90/10. The XRD data also show that the chain packing of m-C(18)/C(19) = 90/10 is different from that of bulk C(18)/C(19) = 90/10.
View Article and Find Full Text PDFIn this paper, the confined crystallization and phase transition behaviors of n-octadecane in microcapsules with a diameter of about 3 microm were studied with the combination of differential scanning calorimetry (DSC), temperature dependent Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The main discovery is that the microencapsulated n-octadecane crystallizes into a stable triclinic phase via a mestastable rotator phase (R I), which emerges as a transient state for the bulk n-octadecane and is difficult to be detected by the commonly used characterization methods. As evident from the DSC measurement, a surface freezing monolayer, which is formed at the interface between the microcapsule inner wall and n-octadecane, induces the crossover of the R I from transient to metastable.
View Article and Find Full Text PDFCrystallization and phase transition behaviors of n-nonadecane in microcapsules with a diameter of about 5 mum were studied with the combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (XRD). As evident from the DSC measurement, a surface freezing monolayer, which is formed in the microcapsules before the bulk crystallization, induces a novel metastable rotator phase (R(II)), which has not been reported anywhere else. We argue that the existence of the surface freezing monolayer decreases the nucleating potential barrier of the R(II) phase and induces its appearance, while the lower free energy in the confined geometry turns the transient R(II) phase to a "long-lived" metastable phase.
View Article and Find Full Text PDF