In order to suppress the noise of the coherent fiber distributed acoustic sensing (DAS) system, the spatio-temporal joint oversampling-downsampling technique is proposed. The spatial oversampling is used for artificially dense sampling, whose spacing is far less than the target spatial resolution. Then the spatial downsampling performed by the average of multiple differential sub-vectors is utilized to reduce the influence of noise vectors, which could completely eliminate the interfere fading without increasing any system complexity and introducing any crosstalk.
View Article and Find Full Text PDFNowadays, early defect detection plays a significant role for the railway safety warning. However, the existing methods cannot satisfy the requirements of real-time and high-precision detection. Here, a high-precision, distributed and on-line method for detecting rail defect is proposed and demonstrated.
View Article and Find Full Text PDFThis paper considers a singular Kirchhoff equation with convection and a parameter. By defining new sub-supersolutions, we prove a new sub-supersolution theorem. Combining method of sub-supersolution with the comparison principle, for Kirchhoff equation with convection, we get the conclusion about positive solutions when nonlinear term is singular and sign-changing.
View Article and Find Full Text PDFA novel Rayleigh noise suppression method is proposed to improve temperature accuracy and resolution for Raman distributed fiber-optics sensors. The proposed temperature demodulation method can eliminate temperature measurement inaccuracy caused by Rayleigh noise. The experimental results indicate that the temperature accuracy is optimized from 6.
View Article and Find Full Text PDFThe field of tunnel fire detection requires a Raman distributed temperature sensor (RDTS) with high-accuracy and visual localization. A novel temperature demodulation method to improve the temperature measurement accuracy of the RDTS systems is presented. This method is based on the optical dynamic difference compensation algorithm, which can eliminate the optical power fluctuation.
View Article and Find Full Text PDFWe propose and experimentally demonstrate a novel auto-correction method for improving temperature stability in long-range Raman distributed fiber temperature sensors. The proposed method is based on multi-stage constant temperature control and dynamic gain calibration technology, which can suppress the unstable photoresponsivity and noise of a system. The experimental results indicate that the temperature stability is optimized from ±12.
View Article and Find Full Text PDF