Electrochemiluminescence (ECL) imaging, a rapidly evolving technology, has attracted significant attention in the field of cellular imaging. However, its primary limitation lies in its inability to analyze the motion behaviors of individual particles in live cellular environments. In this study, we leveraged the exceptional ECL properties of quantum dots (QDs) and the excellent electrochemical properties of carbon dots (CDs) to develop a high-brightness ECL nanoprobe (CDs-QDs) for real-time ECL imaging between living cells.
View Article and Find Full Text PDFCarbon nanodots (C-dots) with good biocompatibility have been extensively utilized as co-reactants for electrochemiluminescence (ECL) of the tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)) system. However, the ECL intensity of this system is still relatively low and the mechanism of C-dots as co-reactants remains unclear, which greatly limits its further application in bio-analysis. In this work, we revealed that the carboxyl groups on C-dots are co-reactant sites for Ru(bpy) ECL by systematically investigating the contribution of carboxyl, hydroxyl and carbonyl groups on the surface of C-dots to the ECL intensity.
View Article and Find Full Text PDFStem cells possess the capability of self-renewal and multipotency, which endows them with great application potential in wound repair fields. Yet, several problems including immune concerns, ethical debates, and oncogenicity impede the broad and deep advance of stem cell-based products. Recently, owing to their abundant resources, excellent biocompatibility, and ease of being engineered, stem cell-derived exosomes were proved to be promising nanomedicine for curing chronic wounds.
View Article and Find Full Text PDFA fluorescence method for the quantitative detection of chloramphenicol (CAP) has been developed using phosphate and fluorescent dye 6-carboxy-x-rhodamine (ROX) double-labeled aptamers of CAP and the bimetallic organic framework nanomaterial Cu/UiO-66. Cu/UiO-66 was prepared by coordinate bonding of metal organic framework (MOF) nanomaterial UiO-66 with copper ions. Cu/UiO-66 contains a large number of metal defect sites, which can be combined with phosphate-modified nucleic acid aptamers through strong coordination between phosphate and zirconium to form "fluorescence turn-on" sensors.
View Article and Find Full Text PDFWe have developed a fluorescence quantitative analysis method for the simultaneous detection of Hg, Pb and Ag based on fluorescently labelled nucleic acid aptamer probes and graphene oxide (GO). By this method, three nucleic acid aptamer probes (P, P, P) were designed. The carboxyl fluorescein (FAM), tetramethyl-6-carboxyrhodamine (TAMRA) and cyanine-5 (Cy-5) were respectively selected as fluorophore of aptamer probes, and GO was chosen as quencher.
View Article and Find Full Text PDFA novel electrochemical magnetoimmunosensor for the rapid and sensitive detection of carcinoembryonic antigen (CEA) was fabricated based on a combination of high-efficiency immunomagnetic separation, bifunctional Au-nanoparticle (bi-AuNP) probes, and enzyme catalytic amplification. The reaction carrier magnetic beads (MBs) effectively reduced the toxicity of the complex sample to the working electrode, and the signal carrier bi-AuNP probes loaded a large amount of signal molecules, both of which enhanced the signal-to-noise ratio and further improved the detection sensitivity. A detection limit as low as 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
With unique and tunable photoluminescence (PL) properties, carbon nanodots (CNDs) as a new class of optical tags have been extensively studied. Because of their merits of controllability and sensitivity to the surface of nanomaterials, electrochemical methods have already been adopted to study the intrinsic electronic structures of CNDs. In this review, we mainly deal with the electrochemical researches of CNDs, including preparation, PL mechanism, and biosensing.
View Article and Find Full Text PDFAn efficient edge-functionalization strategy with high specificity was employed to study the effects of conjugated structures on photoluminescence (PL) properties of graphene quantum dots (GQDs). Both the experimental results and density functional theory (DFT)-based calculations suggested the mechanism for conjugated structures in GQDs to tune the band gap of GQDs.
View Article and Find Full Text PDFThe near-infrared (NIR) electrogenerated chemiluminescence (ECL) of water-dispersed Ag(2)Se quantum dots (QDs) with ultrasmall size was presented for the first time. The Ag(2)Se QDs have shown a strong and efficient cathodic ECL signal with K(2)S(2)O(8) as coreactant on the glassy carbon electrode (GCE) in aqueous solution. The ECL spectrum exhibited a peak at 695 nm, consistent with the peak in photoluminescence (PL) spectrum of the Ag(2)Se QDs solution, indicating that the Ag(2)Se QDs had no deep surface traps.
View Article and Find Full Text PDFThe size of C-nanodots can be electrochemically tuned by changing the applied potential during their preparation. The higher the applied potential, the smaller the resulting C-nanodots. Moreover, the surface oxidation degree of the C-nanodots can also be electrochemically tuned.
View Article and Find Full Text PDFBiosens Bioelectron
September 2009
In the present study, an electrochemical aptasensor for highly sensitive detection of thrombin was developed based on bio-barcode amplification assay. For this proposed aptasensor, capture DNA aptamerI was immobilized on the Au electrode. The functional Au nanoparticles (DNA-AuNPs) are loaded with barcode binding DNA and aptamerII.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
July 2008
In the title mol-ecule, C(17)H(16)N(4)O, the triazole ring makes dihedral angles of 29.00 (1) and 77.74 (1)°, respectively, with the phenyl and benzene rings.
View Article and Find Full Text PDF