The enhancement of the utilization rate of solid waste, along with balancing the comprehensive performance of materials, presents a significant challenge in the development of new functional building materials. This study examined the effects of high concentrations of iron tailing powder on the crystallization characteristics, pore structure, compressive strength, and water absorption of modified magnesium oxysulfate (MOS) foam cement with different dry densities. Furthermore, employing chemical foaming technology, the study characterized and analyzed the microstructure of modified MOS foam cement hydration products through scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD).
View Article and Find Full Text PDFDeveloping flame-retarded styrene-acrylic emulsion (SAE) based damping composites is a challenging task because of their very high flammability. A promising approach is the synergistic combination of expandable graphite (EG) and ammonium polyphosphate (APP). In this study, the surface modification of APP was modified by commercial titanate coupling agent ndz-201 through ball milling, and the SAE-based composite material was prepared with SAE and different ratios of modified ammonium polyphosphate (MAPP) and EG.
View Article and Find Full Text PDF