Publications by authors named "Baoling Qi"

Pulsed light detecting and ranging (Lidar) is capable of acquiring comprehensive target information within a single pulse, including distance and intensity data. Intensity data reflects the target's backscattered intensity and is commonly regarded as a crucial observational parameter associated with target reflectivity information. Multiple studies have indicated the potential of intensity data in various applications within pulsed Lidar contexts.

View Article and Find Full Text PDF

Tuberculosis remains a serious challenge to human health worldwide. -Aminosalicylic acid (PAS) is an important anti-tuberculosis drug, which requires sequential activation by () dihydropteroate synthase and dihydrofolate synthase (DHFS, FolC). Previous studies showed that loss of function mutations of a thymidylate synthase coding gene caused PAS resistance in , but the mechanism is unclear.

View Article and Find Full Text PDF

Background: The perturbation of fatty acid metabolism in heart failure (HF) has been a critical issue. It is unclear whether the amounts of circulating carnitines will benefit primary etiology diagnosis and prognostic prediction in HF. This study was designed to assess the diagnostic and prognostic values of serum carnitine profiles between ischemic and non-ischemic derived heart failure.

View Article and Find Full Text PDF

Pulsed Lidar can obtain rich target information in one pulse, but the echo pulse signal is extremely susceptible to low laser transmitting power and complex target environments, resulting in an amplitude that is too low, which affects detection efficiency and ranging accuracy. In this paper, a variational modal decomposition based on gray wolf optimizer (VMD-GWO) and an empirical mode decomposition (EMD) parallel for denoising and signal enhancement in pulse Lidar is proposed and demonstrated completely. First, the adaptive strategy EMD is used for denoising the signal to obtain effective information.

View Article and Find Full Text PDF

We developed a novel strategy by oxidation-derivatization combined mass spectrometry analysis for the determination of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA. We reported the presence of 5-formylcytosine in RNA of mammals and found that ascorbic acid and hydroquinone can increase the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine in DNA and RNA.

View Article and Find Full Text PDF