Optical vortices (OVs), as eigenmodes of optical orbital angular momentum, have been widely used in particle micro-manipulation. Recently, perfect optical vortices (POVs), a subclass of OVs, are gaining increasing interest and becoming an indispensable tool in optical trapping due to their unique property of topological charge-independent vortex radius. Here, we expand the concept of POVs by proposing concentric ring optical traps (CROTs) and apply them to trapping and rotating particles.
View Article and Find Full Text PDFOptical forces and torques offer the route towards full degree-of-freedom manipulation of matter. Exploiting structured light has led to the discovery of gradient and curl forces, and nontrivial optomechanical manifestations, such as negative and lateral optical forces. Here, we uncover the existence of two fundamental torque components, which originate from the reactive helicity gradient and momentum curl of light, and which represent the rotational analogues to the gradient and curl forces, respectively.
View Article and Find Full Text PDFDocetaxel (DOC) is one of the second-generation antineoplastic drugs of the taxanes family with excellent antitumor activity. However, the mechanism of DOC inducing tumor cell apoptosis and treating cancer diseases, especially its interaction with DNA in the nucleus, and its adjuvant or combined Doxorubicin (DOX) acting on DNA molecules are unclear. In this study, the interaction mechanism between DOC and DNA, as well as the synergistic effects and competitive relationships among DOC and DOX when they simultaneously interact with DNA molecules were studied by laser confocal Raman spectroscopy combined with UV-visible absorption spectroscopy and molecular docking technology.
View Article and Find Full Text PDFThis Editorial is the preface for the topical collection of "Computational Imaging for Biophotonics and Biomedicine", which collates the 12 contributions listed in Table 1 [...
View Article and Find Full Text PDFEnantiomers (opposite chiral molecules) usually exhibit different effects when interacting with chiral agents, thus the identification and separation of enantiomers are of importance in pharmaceuticals and agrochemicals. Here an optical approach is proposed to enantioselective trapping of multiple pairs of enantiomers by a focused hybrid polarized beam. Numerical results indicate that such a focused beam shows multiple local optical chirality of opposite signs in the focal plane, and can trap the corresponding enantiomers near the extreme value of optical chirality density according to the handedness of enantiomers.
View Article and Find Full Text PDFFourier ptychographic microscopy (FPM) is a computational optical imaging technique that overcomes the traditional trade-off between resolution and field of view (FOV) by exploiting abundant redundant information in both spatial and frequency domains for high-quality image reconstruction. However, the redundant information in FPM remains ambiguous or abstract, which presents challenges to further enhance imaging capabilities and deepen our understanding of the FPM technique. Inspired by Shannon's information theory and extensive experimental experience in FPM, we defined the specimen complexity and reconstruction algorithm utilization rate and reported a model of redundant information for FPM to predict reconstruction results and guide the optimization of imaging parameters.
View Article and Find Full Text PDFImaging speed and spatial resolution are key factors in optical diffraction tomography (ODT), while they are mutually exclusive in 3D refractive index imaging. This paper presents a multi-harmonic structured illumination-based optical diffraction tomography (MHSI-ODT) to acquire 3D refractive index (RI) maps of transparent samples. MHSI-ODT utilizes a digital micromirror device (DMD) to generate structured illumination containing multiple harmonics.
View Article and Find Full Text PDFThe concept of lateral optical force (LOF) is of general interest in optical manipulation as it releases the constraint of intensity gradient in tightly focused light, yet such a force is normally limited to exotic materials and/or complex light fields. Here, we report a general and controllable LOF in a nonchiral elongated nanoparticle illuminated by an obliquely incident plane wave. Through computational analysis, we reveal that the sign and magnitude of LOF can be tuned by multiple parameters of the particle (aspect ratio, material) and light (incident angle, direction of linear polarization, wavelength).
View Article and Find Full Text PDFThe optical angular memory effect (AME) is a basic feature of turbid media and defines the correlation of speckles when the incident light is tilted. AME based imaging through solid scattering media such as ground glass and biomedical tissue has been recently developed. However, in the case of liquid media such as turbid water or blood, the speckle pattern exhibits dynamic time-varying characteristics, which introduces several challenges.
View Article and Find Full Text PDFFourier ptychographic microscopy (FPM) is a spatial-temporal-modulation high-throughput imaging technique via a sequential angle-varied LED illumination. Therefore, the illuminator is one of the key components and the design of this illuminator is significant. However, because of the property of spherical wave, partial coherence, and aperture-induced vignetting, the acquired images must be processed in blocks first, and rely on parallel reconstruction via a graphics processing unit (GPU).
View Article and Find Full Text PDFWe present a snapshot imaging Mueller matrix polarimeter using modified Savart polariscopes (MSP-SIMMP). The MSP-SIMMP contains both the polarizing optics and the analyzing optics encoding all Mueller matrix components of the sample into the interferogram by the spatial modulation technique. An interference model and the methods of reconstruction and calibration are discussed.
View Article and Find Full Text PDFPhotonics is currently undergoing an era of miniaturization thanks in part to two-dimensional (2D) optical metasurfaces. Their ability to sculpt and redirect optical momentum can give rise to an optical force, which acts orthogonally to the direction of light propagation. Powered by a single unfocused light beam, these lateral optical forces (LOFs) can be used to drive advanced metavehicles and are controlled via the incident beam's polarization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
The imaginary Poynting momentum (IPM) of light has been captivated as an unusual origin of optical forces. However, the IPM force is predicted only for dipolar magnetoelectric particles that are hardly used in optical manipulation experiments. Here, we report a whole family of high-order IPM forces for not only magnetoelectric but also generic Mie particles, assisted with their excited higher multipoles within.
View Article and Find Full Text PDFBased on the Snyder-Mitchell linear model and the cross-spectral density (CSD) function, the analytical propagation formula of twisted Gaussian Schell-model (TGSM) beams in strongly nonlocal nonlinear medium (SNNM) is derived. Then the propagation characteristics of TGSM beam are studied. It is found that the soliton radius is jointly determined by the initial power, coherence length, and twist factor; the degree of spatial coherence is adjusted by changing the twist factor without affecting the soliton intensity.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2022
We first introduce a class of a superimposed Hermite-Gaussian-correlated Schell model with a multiple off-axis vortices beam, with the side lobe of the beam carrying one to four vortex singularities at the source plane. Subsequently, the variation laws of this beam after being focused by a thin lens are studied theoretically to obtain the optimal beam parameters. The numerical simulation results show that the beam possesses a unique multiple vortex structure, phase structure, and orbital angular momentum.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2022
The identification and separation of chiral substances are of importance in the biological, chemical, and pharmaceutical industries. Here, we demonstrate that a focused circularly polarized vortex beam can, in the focal plane, selectively trap and rotate chiral dipolar particles via radial and azimuthal optical forces. The handedness and topological charge of the incident beam have strong influence on identifying and separating behavior: left- and right-handed circular polarizations lead to opposite effects on the particle of trapping and rotating, while the sign of topological charge will change the particle's rotation direction.
View Article and Find Full Text PDFChirality describes a reduced symmetry and abounds in nature. The handedness-dependent response usually occurs only when a chiral object interacts with another chiral entity. Light carrying orbital angular momentum (OAM) is inherently chiral due to the helical wave front.
View Article and Find Full Text PDFFourier ptychographic microscopy (FPM) has risen as a promising computational imaging technique that breaks the trade-off between high resolution and large field of view (FOV). Its reconstruction is normally formulated as a blind phase retrieval problem, where both the object and probe have to be recovered from phaseless measured data. However, the stability and reconstruction quality may dramatically deteriorate in the presence of noise interference.
View Article and Find Full Text PDFBessel beams have nondiffraction and self-healing properties in the propagation direction and are widely used in particle optical manipulation and optical microscopy. Bessel beams can be generated by axicons or spatial light modulators, which can produce a zero-order or high-order Bessel beam with different parameters depending on the specific application. The modulation of Bessel beams achieved in the spatial spectrum domain by optimization algorithms has a low light energy utilization rate due to the small effective modulation region.
View Article and Find Full Text PDFThe emerging field of structured beams has led to optical manipulation with tremendous progress. Beyond various methods for structured beams, we use phase-shifted zone plates known as beam-shaping diffractive optical elements to generate beams whose phase exclusively or both phase and intensity are twisted along a curve. These beams can trap and guide particles on open curved trajectories for continuous motion, not necessarily requiring a closed symmetric intensity distribution.
View Article and Find Full Text PDFChip-scale optical tweezers, which are usually implemented in a planar format without using bulky diffractive optical elements, are recognized as a promising candidate to be integrated with a lab-on-a-chip system. However, traditional chip-scale optical tweezers are often static and allow for only one type of manipulation functionality since the geometrical parameters of the tweezers are fixed. Herein, we introduce a new, to the best of our knowledge, class of on-chip optical tweezers for diverse types of manipulation of micro-particles.
View Article and Find Full Text PDFStructured illumination microscopy (SIM) has attracted considerable interest in super-resolution, live-cell imaging because of its low light dose and high imaging speed. Obtaining a high-quality reconstruction image in SIM depends on the precise determination of the parameters of the fringe illumination pattern. The image recombination transform (IRT) algorithm is superior to other algorithms in obtaining the precise initial phase without any approximation, which is promising to provide a considerable solution to address the difficulty of initial phase estimation at low-modulation-depth conditions.
View Article and Find Full Text PDF