Publications by authors named "Baokun Xu"

The new anaerobic/oxic/anoxic-aerobic granular sludge (AOA-AGS) merits the advantages of effective carbon utilization and low-carbon treatment. However, low temperature poses stressing concerns and the resisting mechanism remains much unknown. Herein, an AOA-AGS process was configured for simultaneous nitrification, denitrification and phosphorus removal (SNDPR) with low-strength wastewater from ambient (>15 °C) to winter temperatures (<15 °C).

View Article and Find Full Text PDF

Modern paradigm has upgraded wastewater treatment plants (WWTPs) to water resources recovery facilities (WRRFs), where aerobic granular sludge (AGS) is a sewage treatment technology with promising phosphorus recovery (PR) potential. Herein, the AGS-based simultaneous nitrification, denitrification, and phosphorus removal coupling side-stream PR process (AGS-SNDPRr) was developed with municipal wastewater. Results revealed that AGS always maintained good structural stability, and pollutant removal was unaffected and effective after 40 days of anaerobic phosphorus-rich liquid extraction (fixed rate of 30%).

View Article and Find Full Text PDF

The anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal process (AOA-SNDPR) is a promising technology for enhanced biological wastewater treatment and in situ sludge reduction. Herein, effects of aeration time (90, 75, 60, 45, and 30 min, respectively) on the AOA-SNDPR were evaluated including simultaneous nutrients removal, sludge characteristics, and microbial community evolution, where the role of a denitrifying glycogen accumulating organisms, Candidatus_Competibacter, was re-explored given its overwhelming dominance. Results revealed that nitrogen removal was more vulnerable, and a moderate aeration period of 45-60 min favored nutrients removal most.

View Article and Find Full Text PDF

The relationship between species diversity and biomass/productivity is a major scientific question in ecology. Exploring this relationship is essential to understanding the mechanisms underpinning the maintenance of biodiversity. Positive, negative, and neutral relationships have been identified in controlled experiments and observational research.

View Article and Find Full Text PDF

The presence of organic co-substrate in groundwater and soils is inevitable, and much remains to be learned about the roles of organic co-substrates during pyrite-based denitrification. Herein, an organic co-substrate (acetate) was added to a pyrite-based denitrification system, and the impact of the organic co-substrate on the performance and bacterial community of pyrite-based denitrification processes was evaluated. The addition of organic co-substrate at concentrations higher than 48 mg L inhibited pyrite-based autotrophic denitrification, as no sulfate was produced in treatments with high organic co-substrate addition.

View Article and Find Full Text PDF

The nutrients availability determines efficiency of biological treatment systems, along with the structure and metabolism of microbiota. Herein nutrients deficiencies on aerobic granular sludge were comparatively evaluated, treating wastewater with mass ratios of chemical oxygen demand : nitrogen : phosphorus being 200:20:4, 200:2:4, and 200:20:0.4 (deemed as nutrient-balanced, nitrogen-deficient, and phosphorus-deficient), respectively.

View Article and Find Full Text PDF

The effect of temperature on pyrite-based autotrophic denitrification performance and conversion between N species under natural conditions was investigated by using dynamic-flow column experiment. Phosphate and bicarbonate were added trying to enhance denitrification performance when the temperature decreased to 20 °C. However, the temperature had a much more sensitive influence on the denitrification process than substances addition.

View Article and Find Full Text PDF

Acidic sols of TiO2, ZrO2 and Ti-Zr mixed oxide precursors were prepared. The sols were then smeared on quartz substrate and annealed at 650 degrees C for 2 hour to form polycrystalline oxide films. XRD, SEM, UV-visible absorption spectra and XPS were carried out to characterize the films.

View Article and Find Full Text PDF