Diabetic ulcers are one of the common complications in diabetic patients. Delayed wound healing is associated with persistent pro-inflammatory M1 polarization, reduced angiogenesis and increased reactive oxygen species (ROS) in the microenvironment. Wound healing consists of multiple phases and therefore requires treatment tailored to each phase.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
December 2023
This study was aimed to develop an efficient tumour-targeted liposome nanobubbles (LNBs) system using ultrasound-targeted nanobubble destruction for enhanced release and transfection of miRNA-199a-3p in hepatocellular carcinoma (HCC) therapy. The prepared LNBs comprised a polyethylene glycol-modified liposome shell and a perfluoropentane (PFP) core. MiRNA-199a-3p was attached to the nanocomposite surface via electrostatic adsorption, while RGD peptide functionalized the LNBs surface for enhanced HCC cell targeting, namely PFP@miR-RGD-LNBs.
View Article and Find Full Text PDFNanobubbles (NBs) are considered to be a new generation of ultrasound-responsive nanocarriers that can effectively target tumors, accurately release multi-drugs at desired locations, as well as simultaneously perform diagnosis and treatment. In this study, we designed theranostic NBs (FTY720@SPION/PFP/RGD-NBs) composed of RGD-modified liposomes as the shell, and perflenapent (PFP), superparamagnetic iron oxide nanoparticles (SPION), and fingolimod (2-amino-2[2-(4-octylphenyl)ethyl]-1,3-propanediol, FTY720) encapsulated as the core. The prepared FTY720@SPION/PFP/RGD-NBs were black spheres with a diameter range of 160-220 nm, eligible for enhanced permeability and retention (EPR) effects.
View Article and Find Full Text PDF