Publications by authors named "Baohui Chen"

Neurons often grow highly branched and cell-type specific dendrite morphologies to receive and integrate information, which is the basis of precise neural circuit formation. Previous studies have identified numerous mechanisms that promote dendrite branching. In contrast, it is much less understood how this process is negatively regulated.

View Article and Find Full Text PDF

Maximizing cell survival under stress requires rapid and transient adjustments of RNA and protein synthesis. However, capturing these dynamic changes at both single-cell level and across an organism has been challenging. Here, we developed a system named MONITTR (MS2-embedded mCherry-based monitoring of transcription) for real-time simultaneous measurement of nascent transcripts and endogenous protein levels in C.

View Article and Find Full Text PDF

Lithium (Li) ion batteries have played a great role in modern society as being extensively used in commercial electronic products, electric vehicles, and energy storage systems. However, battery safety issues have gained growing concerns as there might be thermal runaway, fire or even explosion under external abuse. To tackle these safety issues, developing non-flammable electrolytes is a promising strategy.

View Article and Find Full Text PDF

Zinc-iodine batteries (Zn-I2) are extremely attractive as the safe and cost-effective scalable energy storage system in the stationary applications. However, the inefficient redox kinetics and "shuttling effect" of iodine species result in unsatisfactory energy efficiency and short cycle life, hindering their commercialization. In this work, Ni single atoms highly dispersed on carbon fibers is designed and synthesized as iodine anchoring sites and dual catalysts for Zn-I2 batteries, and successfully inhibit the iodine species shuttling and boost dual reaction kinetics.

View Article and Find Full Text PDF

Investigating gene function relies on the efficient manipulation of endogenous gene expression. Currently, a limited number of tools are available to robustly manipulate endogenous gene expression between "on" and "off" states. In this study, we insert a 63 bp coding sequence of T3H38 ribozyme into the 3' untranslated region (UTR) of C.

View Article and Find Full Text PDF

The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major obstacle to curing chronic hepatitis B (CHB). Current cccDNA detection methods are mostly based on biochemical extraction and bulk measurements. They nevertheless generated a general sketch of its biological features.

View Article and Find Full Text PDF

Real-time imaging tools for single-virus tracking provide spatially resolved, quantitative measurements of viral replication and virus-host interactions. However, efficiently labeling both parental and progeny viruses in living host cells remains challenging. Here, we developed a novel strategy using the CRISPR-Tag system to detect herpes simplex virus 1 (HSV-1) DNA in host cells.

View Article and Find Full Text PDF

Technologies for gene activation are valuable tools for the study of gene functions and have a wide range of potential applications in bioengineering and medicine. In contrast to existing methods based on recruiting transcriptional modulators via DNA-binding proteins, we developed a strategy termed Narta (nascent RNA-guided transcriptional activation) to achieve gene activation by recruiting artificial transcription factors (aTFs) to transcription sites through nascent RNAs of the target gene. Using Narta, we demonstrate robust activation of a broad range of exogenous and endogenous genes in various cell types, including zebrafish embryos, mouse and human cells.

View Article and Find Full Text PDF

RNA polymerase I (Pol I) synthesizes about 60% of cellular RNA by transcribing multiple copies of the ribosomal RNA gene (rDNA). The transcriptional activity of Pol I controls the level of ribosome biogenesis and cell growth. However, there is currently a lack of methods for monitoring Pol I activity in real time.

View Article and Find Full Text PDF

In this paper, two types of polymer-stabilized blue-phase liquid crystals (PS-BPLCs) with different monomers were designed and prepared. The morphology, temperature range and electro-optical properties of the blue phases were studied and discussed. The temperature range of both types of PS-BPLC is greater than 110 °C, and both samples can be stabilized well at room temperature.

View Article and Find Full Text PDF

It is important to eliminate lipopolysaccharide (LPS) along with killing bacteria in periprosthetic joint infection (PJI) therapy for promoting bone repair due to its effect to regulate macrophages response. Although natural antimicrobial peptides (AMPs) offer a good solution, the unknown toxicity, high cost and exogenetic immune response hamper their applications in clinic. In this work, we fabricated a nanowire-like composite material, named P@C, by combining chitosan and puerarin via solid-phase reaction, which can finely mimic the bio-functions of AMPs.

View Article and Find Full Text PDF

Cortical actin, a thin layer of actin network underneath the plasma membranes, plays critical roles in numerous processes, such as cell morphogenesis and migration. Neurons often grow highly branched dendrite morphologies, which is crucial for neural circuit assembly. It is still poorly understood how cortical actin assembly is controlled in dendrites and whether it is critical for dendrite development, maintenance and function.

View Article and Find Full Text PDF

Wound healing is one of the major global health concerns in patients with diabetes. Overactivation of pro-inflammatory M1 macrophages is associated with delayed wound healing in diabetes. miR-29ab1 plays a critical role in diabetes-related macrophage inflammation.

View Article and Find Full Text PDF

Skin wounds, especially infected chronic wounds, have attracted worldwide attention due to the high prevalence and poor treatment outcomes. Hydrogel dressings with antibacterial ability and immune regulation property are urgently required. Herein, inspired by the grinding treatment of traditional Chinese medicine, mechanical force is introduced to promote the effective molecular collision and accelerate the self-assembly of chitosan (CS) and puerarin (PUE) for fabricating Chinese-herb-based hydrogels.

View Article and Find Full Text PDF

Bacterial fruit blotch, caused by seed-borne pathogen , poses a serious threat to the production of cucurbits globally. Although the disease can cause substantial economic losses, limited information is available about the molecular mechanisms of virulence. This study identified that, a random transposon insertion mutant impaired in the ability to elicit a hypersensitive response on tobacco.

View Article and Find Full Text PDF

Uveal melanoma (UM) is the most prevalent primary intraocular malignant tumor with a high lethal rate. Patients who undergo conventional enucleation treatments consistently suffer permanent blindness, facial defects, and mental disorders, therefore, novel therapeutic modalities are urgently required. Herein, an injectable and stimuli-responsive drug delivery antibacterial hydrogel (CP@Au@DC_AC50) is constructed via a facile grinding method that is inspired by the preparation process of traditional Chinese medicine.

View Article and Find Full Text PDF

A wealth of single-cell imaging studies have contributed novel insights into chromatin organization and gene regulation. However, a comprehensive understanding of spatiotemporal gene regulation requires developing tools to combine multiple monitoring systems in a single study. Here, we report a versatile tag, termed TriTag, which integrates the functional capabilities of CRISPR-Tag (DNA labeling), MS2 aptamer (RNA imaging) and fluorescent protein (protein tracking).

View Article and Find Full Text PDF

CRISPR/Cas-based mRNA imaging has been developed to labeling of high-abundance mRNAs. A lack of non-genetically encoded mRNA-tagged imaging tools has limited our ability to explore the functional distributions of endogenous low-abundance mRNAs in cells. Here, we developed a CRISPR-Sunspot method based on the SunTag signal amplification system that allows efficient imaging of low-abundance mRNAs with CRISPR/Cas9.

View Article and Find Full Text PDF

Background/aims: The etiology of inflammatory bowel disease is multifactorial and still obscure. The protective role of ubiquitin E3 ligase A20 (A20) in colitis needs to be further elucidated. This study aimed to investigate whether A20 exogenous administration restored impaired intestinal permeability and inhibited T helper (Th)2 response in mice with colitis.

View Article and Find Full Text PDF

Transition metal borides are a kind of potential materials for high-temperature solar thermal applications. In this work, a novel SS/HfB/AlO tandem absorber was prepared, which exhibited high solar spectrum selectivity (/) of 0.920/0.

View Article and Find Full Text PDF

is the causal agent of bacterial fruit blotch, a serious threat to commercial watermelon and melon crop production worldwide. Ferric uptake regulator (Fur) is a global transcription factor that affects a number of virulence-related functions in phytopathogenic bacteria; however, the role of has not been determined for . Hence, we constructed an deletion mutant and a corresponding complement in the background of strain xlj12 to investigate the role of the gene in siderophore production, concentration of intracellular Fe, bacterial sensitivity to hydrogen peroxide, biofilm formation, swimming motility, hypersensitive response induction, and virulence on melon seedlings.

View Article and Find Full Text PDF

Prevention of implant-associated infections and insufficient bone tissue integration is critical to exploit the immunomodulatory properties and antibacterial effects of implant materials, which have attracted considerable attention. Modulation of the functions of immune cells in different environments is crucial for managing infection and inferior bone integration via immunomodulation. In this work, sodium butyrate, a fermentation product of gut microbiota, was loaded onto 3D porous sulfonated polyetheretherketone (SP) to modulate the immune responses of cells in different environments.

View Article and Find Full Text PDF

Host rejection to biomaterials can induce uncontrolled foreign-body reactions (FBR), resulting in a dense fibrous encapsulation that blocks mass transport and/or communication between the host and the implant. Adequate angiogenesis between the body and the implant has been implicated as a key regulator for overcoming FBR. Thus, approaches for stimulating neovascularization and/or suppressing FBR are under investigation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions5h81r9i8t6oc7lqjjvvckbkogo78eo6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once