Publications by authors named "Baohai Li"

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Zinc (Zn) is an essential micronutrient but can be cytotoxic when present in excess. Plants have evolved mechanisms to tolerate Zn toxicity. To identify genetic loci responsible for natural variation of plant tolerance to Zn toxicity, we conduct genome-wide association studies for root growth responses to high Zn and identify 21 significant associated loci.

View Article and Find Full Text PDF

The chemical form and physiological activity of iron (Fe) in soil are dependent on soil pH and redox potential (Eh), and Fe levels in soils are frequently elevated to the point of causing Fe toxicity in plants, with inhibition of normal physiological activities and of growth and development. In this review, we describe how iron toxicity triggers important physiological changes, including nitric-oxide (NO)-mediated potassium (K) efflux at the tips of roots and accumulation of reactive oxygen species (ROS) and reactive nitrogen (RNS) in roots, resulting in physiological stress. We focus on the root system, as the first point of contact with Fe in soil, and describe the key processes engaged in Fe transport, distribution, binding, and other mechanisms that are drawn upon to defend against high-Fe stress.

View Article and Find Full Text PDF

Successful biochemical reactions in organisms necessitate compartmentalization of the requisite components. Glandular trichomes (GTs) act as compartments for the synthesis and storage of specialized compounds. These compounds not only are crucial for the survival of plants under biotic and abiotic stresses but also have medical and commercial value for humans.

View Article and Find Full Text PDF

Increased planting densities boost crop yields. A compact plant architecture facilitates dense planting. However, the mechanisms regulating compact plant architecture in cucurbits remain unclear.

View Article and Find Full Text PDF

The lignocellulosic biorefinery industry can be an important contributor to achieving global carbon net zero goals. However, low valorization of the waste lignin severely limits the sustainability of biorefineries. Using a hydrothermal reaction, we have converted sulfuric acid lignin (SAL) into a water-soluble hydrothermal SAL (HSAL).

View Article and Find Full Text PDF

Efficient uptake of nutrients in both animal and plant cells requires tissue-spanning diffusion barriers separating inner tissues from the outer lumen/soil. However, we poorly understand how such contiguous three-dimensional superstructures are formed in plants. Here, we show that correct establishment of the plant Casparian Strip (CS) network relies on local neighbor communication.

View Article and Find Full Text PDF

Nitric oxide (NO) regulates plant growth, enhances nutrient uptake, and activates disease and stress tolerance mechanisms in most plants, making NO a potential tool for use in improving the yield and quality of horticultural crop species. Although the use of NO in horticulture is still in its infancy, research on NO in model plant species has provided an abundance of valuable information on horticultural crop species. Emerging evidence implies that the bioactivity of NO can occur through many potential mechanisms but occurs mainly through S-nitrosation, the covalent and reversible attachment of NO to cysteine thiol.

View Article and Find Full Text PDF

Ammonium (NH4+) is toxic to root growth in most plants already at moderate levels of supply, but mechanisms of root growth tolerance to NH4+ remain poorly understood. Here, we report that high levels of NH4+ induce nitric oxide (NO) accumulation, while inhibiting potassium (K+) acquisition via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4), leading to the arrest of primary root growth. High levels of NH4+ also stimulated the accumulation of GSNOR (S-nitrosoglutathione reductase) in roots.

View Article and Find Full Text PDF

Oxidative stress is a common event in aerobic organisms and a fundamental and unavoidable cost of the aerobic lifestyle. Reactive oxygen and nitrogen species (ROS/RNS) and iron (Fe) are the most common agents that trigger oxidative stress. A conserved enzyme in the S-nitrosoglutathione (GSNO) metabolism, GSNO reductase (GSNOR), modulates a multitude of abiotic and biotic stress responses.

View Article and Find Full Text PDF

Melatonin is a pleiotropic molecule with multiple functions in plants. Since the discovery of melatonin in plants, numerous studies have provided insight into the biosynthesis, catabolism, and physiological and biochemical functions of this important molecule. Here, we describe the biosynthesis of melatonin from tryptophan, as well as its various degradation pathways in plants.

View Article and Find Full Text PDF

Mg is among the most abundant divalent cations in living cells. In plants, investigations on magnesium (Mg) homeostasis are restricted to the functional characterization of Mg transporters. Here, we demonstrate that the splicing factors () and mediate Mg homeostasis in Arabidopsis ().

View Article and Find Full Text PDF

Importance: The gastric cancer (GC)-associated long noncoding RNA1 (lncRNA-GC1) plays an important role in gastric carcinogenesis. However, exosomal lncRNA-GC1 and its potential role in GC are poorly understood.

Objective: To evaluate the diagnostic value of circulating exosomal lncRNA-GC1 for early detection and monitoring progression of GC.

View Article and Find Full Text PDF

Polyphenols, pivotal secondary metabolites, are involved in plant adaption to abiotic stresses. Here, we investigated the role and metabolism profile of polyphenols under aluminum (Al) stress in different lettuce genotypes grown in 0.5 mM CaCl solution with AlCl (pH = 4.

View Article and Find Full Text PDF

Despite the importance of preventing calcium (Ca) deficiency disorders in agriculture, knowledge of the molecular mechanisms underlying plant adaptations to low-Ca conditions is limited. In this study, we provide evidence for a crucial involvement of callose synthesis in the survival of Arabidopsis () under low-Ca conditions. A mutant sensitive to low-Ca conditions, (), exhibited high levels of cell death in emerging leaves and had defects in its expanding true leaves under low-Ca conditions.

View Article and Find Full Text PDF

Iron (Fe) is essential for life, but in excess can cause oxidative cytotoxicity through the generation of Fe-catalyzed reactive oxygen species. It is yet unknown which genes and mechanisms can provide Fe-toxicity tolerance. Here, we identify S-nitrosoglutathione-reductase (GSNOR) variants underlying a major quantitative locus for root tolerance to Fe-toxicity in Arabidopsis using genome-wide association studies and allelic complementation.

View Article and Find Full Text PDF

To better comprehend the mechanism that neuropeptide Y (npy) regulates feeding in Schizothorax davidi, we cloned and identified the full-length cDNA sequence of the npy gene in this species using RACE technology. Subsequently, we explored the npy mRNA distribution in 18 tissues and investigated the expression of npy mRNA at postprandial and fasting stages. We found that the npy full-length cDNA sequence is 803 bp.

View Article and Find Full Text PDF

In fish, as in mammals, several studies have demonstrated that the cocaine- and amphetamine-regulated transcript (CART) plays an important role in feeding. However, thus far, the function of CART in gibel carp (Carassius auratus gibelio) feeding regulation has not been reported. In our study, we first identified three forms of CART peptide precursors from gibel carp brain and named these CART-1, CART-2, and CART-3.

View Article and Find Full Text PDF

Several studies have demonstrated that the neuropeptide peptide YY (PYY) plays an important role in feeding in mammals and fish. However, thus far, the feeding regulation function of PYY in Schizothorax davidi has not been well understood. Here, we identified the full-length cDNA sequence of PYY in S.

View Article and Find Full Text PDF

is an endangered fish species found in the Buqun Lake of Qinghai-Tibet Plateau. In this study, we determined the complete mitochondrial genome sequence of the S. The circular mitochondrial genome was 16,621 bp in length, containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a control region (D-loop).

View Article and Find Full Text PDF

The complete mitochondrial DNA sequence of was determined and analyzed. This mitochondrial genome was 16,728bp in length and consisted of 37genes in the typical vertebrate mitochondrial gene arrangement. Phylogenetic analysis showed that is more closely related to than to other species.

View Article and Find Full Text PDF

is an endemic species and distributes in the MoTuo reaches of the Yarlung Zangbo River. It is one of the most important commercial fishes in this area. In the present study, the complete mitochondrial DNA sequence of was determined and analyzed.

View Article and Find Full Text PDF

The complete mitochondrial DNA sequence of was determined and analyzed. This mitochondrial genome was 16,578bp in length and showed significant AT bias (55.5% AT content, 44.

View Article and Find Full Text PDF

The , a new recorded species in Lange Lake, was grouped into genus in Schizothoracinae, and had the rare quantity and limited resources on biology and genetics, especially in the mitochondrion. In this study, the complete mitochondrial sequence of was assembled and phylogenetic relationships with other species in Cyprinidae were analyzed. The whole mitochondrial sequence was 16,864 bp in length, which contained two control regions (D-loop regions), two rRNA genes (12S and 16S rRNA), 13 protein-coding genes and 22 tRNA genes.

View Article and Find Full Text PDF

The formation of Casparian strips and suberin lamellae at the endodermis limits the free diffusion of nutrients and harmful substances via the apoplastic space between the soil solution and the stele in roots [1-3]. Casparian strips are ring-like lignin polymers deposited in the middle of anticlinal cell walls between endodermal cells and fill the gap between them [4-6]. Suberin lamellae are glycerolipid polymers covering the endodermal cells and likely function as a barrier to limit transmembrane movement of apoplastic solutes into the endodermal cells [7, 8].

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh1fqoprebu3d4fffl8u9vm0mkearskdo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once