Over the past few decades, significant research has been conducted on tissue-engineered constructs for cartilage repair. However, there is a growing interest in addressing subchondral bone repair along with cartilage regeneration. This study focuses on a bilayer tissue engineering scaffold loaded with icariin (ICA) and quercetin (QU) for simultaneous treatment of knee joint cartilage and subchondral bone defects.
View Article and Find Full Text PDFUltra-high-performance concrete (UHPC) is an advanced cement-based material with excellent mechanical properties and durability. However, with the improvement of UHPC's compressive properties, its insufficient tensile properties have gradually attracted attention. This paper reviews the tensile properties of steel fibers in UHPC.
View Article and Find Full Text PDFIn view of high-performance, multifunctional, and low-carbon development of infrastructures, there is a growing demand for smart engineering materials, making infrastructures intelligent. This paper reports a new-generation self-sensing cementitious composite (SSCC) incorporated with a hierarchically structured carbon fiber (CF)-carbon nanotube (CNT) composite filler (CF-CNT), which is in situ synthesized by directly growing CNT on CF. Various important factors including catalyst, temperature, and gas composition are considered to investigate their kinetic and thermodynamic influence on CF-CNT synthesis.
View Article and Find Full Text PDFMagnetorheological (MR) fluids are smart materials that show enormous potential in vibration control, mechanical engineering, etc. However, the effects of the solid-liquid interface strength and the interaction strength between carrier liquid molecules on the mechanical properties and sedimentation stability of MR fluids have always been unresolved issues. This work presents a new type of MR fluid that has a novel carrier liquid, , silicone oil (SO) mixed with a hydroxyl-functionalized ionic liquid (IL-OH).
View Article and Find Full Text PDFTo develop high deterioration resistance concrete for marine infrastructures, two types of nano TiO(NT) including anatase phase NT and silica surface-treated rutile phase NT were incorporated into concrete. The fabricated NT modified concrete was then put into the marine environment for 21 months in this study. The effects and mechanisms of two types of NT on the deterioration of concrete in the marine environment were investigated from three aspects, including seawater physical and biological as well as chemical actions on concrete with NT.
View Article and Find Full Text PDFConstr Build Mater
November 2020
Concrete structures in sewer systems, marine engineering, underground engineering and other humid environments are easily subjected to microbial attachment, colonization and, eventually, deterioration. With careful selection and treatment, some additives including inorganic and organic antimicrobial agents were found to be able to endow concrete with excellent antimicrobial performance. This paper reviews various types of antimicrobial concrete fabricated with different types of antimicrobial agents.
View Article and Find Full Text PDFMaterials (Basel)
February 2020
Sawdust-reinforced ice-filled flax fiber-reinforced polymer (FRP) tubular (SIFFT) columns are newly proposed to be used as structural components in cold areas. A SIFFT column is composed of an external flax FRP tube filled with sawdust-reinforced ice. The compressive behavior of circular SIFFT short columns was systematically investigated.
View Article and Find Full Text PDFThe cement sheath is the key for providing the zonal isolation and integrity of the wellbore. Oil well cement works under confining pressure, so it exhibits strong nonlinear and ductile behavior which is very different from that without confining pressure. Therefore, for the accuracy of the simulation and the reliability of well construction design, a reliable compression stress-strain model is essential for confined well cement.
View Article and Find Full Text PDFIn this study, conductive carbon nanofibers (CNFs) were dispersed into epoxy resin and then infused into glass fiber fabric to fabricate CNF/glass fiber-reinforced polymer (GFRP) laminates. The electrical resistance and strain of CNF/GFRP laminates were measured simultaneously during tensile loadings to investigate the in situ strain and damage monitoring capability of CNF/GFRP laminates. The damage evolution and conduction mechanisms of the laminates were also presented.
View Article and Find Full Text PDFNanotechnology
November 2009
In this paper, a self-sensing carbon nanotube (CNT)/cement composite is investigated for traffic monitoring. The cement composite is filled with multi-walled carbon nanotubes whose piezoresistive properties enable the detection of mechanical stresses induced by traffic flow. The sensing capability of the self-sensing CNT/cement composite is explored in laboratory tests and road tests.
View Article and Find Full Text PDF