Publications by authors named "Baoguang Liu"

Lung adenocarcinoma (LUAD) is the most common subtypes of NSCLC. However, the therapeutic effects for LUAD are unsatisfactory at current stage, so it is important to find new molecular targets and therapeutic strategies. circRNAs can regulate the expression of target genes by binding to microRNAs (miRNAs) to form competitive endogenous RNAs (ceRNAs).

View Article and Find Full Text PDF

The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) offers superior advantages in electronics due to its remarkable combination of high electrical conductivity, excellent biocompatibility, and mechanical flexibility, making it an ideal material among electronic skin, health monitoring, and energy harvesting and storage. Nevertheless, pristine PEDOT:PSS films exhibit limitations in terms of both low conductivity and stretchability; while, conventional processing techniques cannot enhance these properties simultaneously, facing the dilemma that highly conductive interconnected PEDOT:PSS domains are susceptible to tensile strain. Via modifying PEDOT:PSS with ionic liquids (ILs), not only a synergistic enhancement of the electrical and mechanical properties can be achieved but also the requirements for the printable bioelectronic are satisfied.

View Article and Find Full Text PDF

The domestication of forest trees for a more sustainable fiber bioeconomy has long been hindered by the complexity and plasticity of lignin, a biopolymer in wood that is recalcitrant to chemical and enzymatic degradation. Here, we show that multiplex CRISPR editing enables precise woody feedstock design for combinatorial improvement of lignin composition and wood properties. By assessing every possible combination of 69,123 multigenic editing strategies for 21 lignin biosynthesis genes, we deduced seven different genome editing strategies targeting the concurrent alteration of up to six genes and produced 174 edited poplar variants.

View Article and Find Full Text PDF

Co-enzyme A (CoA) ligation of hydroxycinnamic acids by 4-coumaric acid:CoA ligase (4CL) is a critical step in the biosynthesis of monolignols. Perturbation of 4CL activity significantly impacts the lignin content of diverse plant species. In , two well-studied xylem-specific Ptr4CLs (Ptr4CL3 and Ptr4CL5) catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA.

View Article and Find Full Text PDF

Tension wood (TW) is a specialized xylem tissue developed under mechanical/tension stress in angiosperm trees. TW development involves transregulation of secondary cell wall genes, which leads to altered wood properties for stress adaptation. We induced TW in the stems of black cottonwood (Populus trichocarpa, Nisqually-1) and identified two significantly repressed transcription factor (TF) genes: class B3 heat-shock TF (HSFB3-1) and MYB092.

View Article and Find Full Text PDF

Adventitious root (AR) formation is critically important in vegetative propagation through cuttings in some plants, especially woody species. However, the underlying molecular mechanisms remain elusive. Here, we report the identification of a poplar homeobox gene, PuHox52, which was induced rapidly (within 15 min) at the basal ends of stems upon cutting and played a key regulatory role in adventitious rooting.

View Article and Find Full Text PDF

Background: Curcumin is a major active ingredient extracted from powdered dry rhizome of Curcuma longa. In Ayurveda and traditional Chinese medicine, it has been used as a hepatoprotective agent for centuries. However, the underlying mechanisms are not clear.

View Article and Find Full Text PDF

The enzymes that comprise the monolignol biosynthetic pathway have been studied intensively for more than half a century. A major interest has been the role of pathway in the biosynthesis of lignin and the role of lignin in the formation of wood. The pathway has been typically conceived as linear steps that convert phenylalanine into three major monolignols or as a network of enzymes in a metabolic grid.

View Article and Find Full Text PDF

Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in under drought stress.

View Article and Find Full Text PDF

Lignin is the major phenolic polymer in plant secondary cell walls and is polymerized from monomeric subunits, the monolignols. Eleven enzyme families are implicated in monolignol biosynthesis. Here, we studied the functions of members of the cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl-CoA reductase (CCR) families in wood formation in Populus trichocarpa, including the regulatory effects of their transcripts and protein activities on monolignol biosynthesis.

View Article and Find Full Text PDF

Background: is one of the most prevalent pathogens and a causative agent of a variety of infections in humans and animals. A total of 640 samples were collected from healthy animals and patients from 2013 to 2014 in Henan Province, China, to investigate the prevalence and perform molecular characterization of . Antimicrobial resistance and virulence genes were determined and pulsed-field gel electrophoresis (PFGE) and cassette chromosome (SCC) typing were performed.

View Article and Find Full Text PDF

A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties.

View Article and Find Full Text PDF

Background: The plasmid-encoded multidrug efflux pump confers bacterial resistance primarily to olaquindox, quinolones, and chloramphenicol. The aims of this study were to investigate the prevalence of among isolates from dogs, cats, and humans in Henan, China and the susceptibilities of isolates to common antibiotics.

Methods: From 2012 to 2014, a total of 600 samples which included 400 rectal samples and 200 clinical human specimens were tested for the presence of .

View Article and Find Full Text PDF

Colistin has been used as the last-line antibiotic for Escherichia coli infections. Herein, we collected 102 E. coli isolates from diseased pigs and 204 from healthy ones in Henan province of China.

View Article and Find Full Text PDF

This study was undertaken to discern the differences of the multi-locus sequence typing (MLST), O serogroups, and virulence factors among 34 CTX-M-1 Escherichia coli, 49 CTX-M-9 strains and 23 non-CTX-M isolates from chickens in Henan province, China. The MLST scheme yielded 34 sequence types, in which ST155 and ST359 were frequent (17% and 15%, respectively) and associated with zoonotic disease. The irp-2 (20% versus 2%, P = 0.

View Article and Find Full Text PDF

To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated.

View Article and Find Full Text PDF

The Archangel pigeon mitochondrial DNA has 17,235 bp and its structural organization is conserved compared to those of other birds. In this study, we report the basic characteristics of the Archangel mitochondrial genome, including structural organization and base composition of the rRNAs, tRNAs and protein-coding genes, as well as characteristics of tRNAs. These features are applicable for the study of phylogenetic relationships in pigeons.

View Article and Find Full Text PDF

Peptide deformylases (PDF) behave as monomeric metal cation hydrolases for the removal of the N-formyl group (Fo). This is an essential step in the N-terminal Met excision (NME) that occurs in these proteins from eukaryotic mitochondria or chloroplasts. Although PDFs have been identified and their structure and function have been characterized in several herbaceous species, it remains as yet unexplored in poplar.

View Article and Find Full Text PDF