Publications by authors named "Baofei Jiang"

In recent years, accumulating evidence has demonstrated the role of long noncoding RNAs (lncRNAs) in colon cancer. We aim to investigate the role of MIR143HG, also known as CARMN (Cardiac mesoderm enhancer-associated noncoding RNA) in colon cancer and explore the related mechanisms. An RNAseq data analysis was performed to screen differentially expressed lncRNAs associated with colon cancer.

View Article and Find Full Text PDF

The purpose of our investigation is to explore the putative molecular mechanisms underpinning LINC00858 involvement in colon cancer. The expression of LINC00858 in TCGA data was identified using the GEPIA website. Colon cancer cancerous tissues were clinically collected.

View Article and Find Full Text PDF

It has been shown that LIM-domain-binding protein 1 (LDB1) is involved in the tumorigenesis of several cancers, but its function in colorectal cancer (CRC) has not been fully explained. This study is aimed to investigate whether LDB1 is involved in regulating the cell growth and drug sensitivity of CRC. To analyze the protein expression of LDB1 in CRC tissues, western blot was used.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play important roles in a range of different human cancers. However, the role of lncRNA solute carrier organic anion transporter family member 4A1-AS1 (SLCO4A1-AS1) in colon cancer remains enigmatic. Hence, we aimed to explore the specific role of SLCO4A1-AS1 in colon cancer stem cells.

View Article and Find Full Text PDF

Nuclear receptor subfamily 4, group A, member 1 (NR4A1) can aggravate ischaemia-reperfusion (I/R) injury in the heart, kidney and brain. Thus, the present study aimed to unravel the role of NR4A1 on hepatic I/R injury. For this purpose, the mouse hepatic I/R model and H/R-exposed mouse hepatocytes model were established to stimulate the hepatic and hepatocellular damage.

View Article and Find Full Text PDF

Poor prognosis of esophageal cancer is associated with limited clinical treatment efficacy and lack of targeted therapies. With advances in nanomedicine, nanoparticle drug delivery systems play increasingly important roles in tumor treatment by enabling the simultaneous delivery of multiple therapeutic agents. We here propose a novel nanovector for targeted combination gene therapy and chemotherapy in esophageal cancer.

View Article and Find Full Text PDF

Background: Long non-coding RNAs (lncRNAs) are known to be frequently dysregulated in many types of human cancer. As yet, however, their roles in colon carcinogenesis have not been fully elucidated. In the current study, we assessed whether lncRNA LINC00858 may be involved in the progression of colon cancer and, in addition, investigated its downstream targets.

View Article and Find Full Text PDF

Colorectal cancer (CRC), a leading cause of cancer death, has recently been known as the most prevalent malignancy worldwide. Although chemotherapy is an important therapeutic option for CRC patients, multidrug resistance (MDR) still remains a major cause of chemotherapy failure. Transmembrane protein 45A (TMEM45A) has been found highly expressed in various cancers, and is also proposed as an interesting biomarker for chemoresistance.

View Article and Find Full Text PDF

Mps1/TTK plays an important role in development of many tumors. The purpose of the present study was designed to investigate the role of TTK in colon cancer. We analyzed TTK and colon cancer in the GEO database, colon cancer tissues and normal tissues were collected to verify the results by immunohistochemistry.

View Article and Find Full Text PDF

Background/aims: Multidrug resistance (MDR) is the most common cause of chemotherapy failure. Upregulation of P-glycoprotein (P-gp) is one of the main mechanisms underlying MDR.

Methods: In this study, we developed a targeted drug and small interfering (si)RNA co-delivery system based on specific aptamer-conjugated grapefruit-derived nanovectors (GNVs) that we tested in MDR LoVo colon cancer cells.

View Article and Find Full Text PDF

The morbidity of colorectal cancer (CRC) increases annualy, which accounts to higher mortality worldwide. Therefore, it is important to study the pathogenesis of colon cancer. Ribophorin II (RPN2), part of the N-oligosaccharyltransferase complex, is highly expressed in CRC.

View Article and Find Full Text PDF

LB-100 is a novel PP2A inhibitor. Its activity in human colorectal cancer (CRC) cells was tested. The studies demonstrated that LB-100 inhibited survival and proliferation of both established CRC cells (HCT-116 and HT-29 lines) and primary human colon cancer cells.

View Article and Find Full Text PDF

Low toxicity and high efficacy are the key factors influencing the real-world clinical applications of nanomaterial-assisted drug delivery. In this study, novel hollow carbon spheres (HCSs) with narrow size distribution were developed. In addition to demonstrating their ease of synthesis for large-scale production, we also demonstrated in vitro that the HCSs possessed high drug-loading capacity, lower cell toxicity, and optimal drug release profile at low pH, similar to the pH in the tumor microenvironment.

View Article and Find Full Text PDF

The impact and management of microscopically positive margins in gastrointestinal stromal tumors (GISTs) remain unclear. The aim of this study is to estimate the prognostic value of surgical margins for disease-free survival (DFS) and overall survival (OS) in patients with primary GISTs. Twelve studies with 1985 GIST patients were included.

View Article and Find Full Text PDF

Intestinal ischemic injury is a significant clinical problem arising from diseases or as a complication of abdominal surgery. Our previous study showed aquaporin 3 is involved in intestinal barrier impairment. Here, we revealed that intestinal ischemia induced a time-dependent increase of miR-874 expression and a time-dependent decrease of AQP3 expression, and the level of miR-874 expression was inversely related to AQP3 protein expression.

View Article and Find Full Text PDF

Background: Aquaporin-3 (AQP3) is a water transporting protein which plays an oncogenic role in several malignant tumors. However, its regulatory mechanism remains elusive to date. In this study, we investigated the microRNA-mediated gene repression mechanism involved in AQP3's role.

View Article and Find Full Text PDF