J Phys Chem Lett
January 2024
The human brain efficiently processes only a fraction of visual information, a phenomenon termed attentional control, resulting in energy savings and heightened adaptability. Translating this mechanism into artificial visual neurons holds promise for constructing energy-efficient, bioinspired visual systems. Here, we propose a self-rectifying artificial visual neuron (SEVN) based on a NiO/GaO bipolar heterojunction with attentional control on patterns with a target color.
View Article and Find Full Text PDFThe cone photoreceptors in our eyes selectively transduce the natural light into spiking representations, which endows the brain with high energy-efficiency color vision. However, the cone-like device with color-selectivity and spike-encoding capability remains challenging. Here, we propose a metal oxide-based vertically integrated spiking cone photoreceptor array, which can directly transduce persistent lights into spike trains at a certain rate according to the input wavelengths.
View Article and Find Full Text PDFBreast Cancer Res Treat
July 2007
We have previously observed a paradoxical relationship of the psoriasin/S100A7 gene with estrogen response in-vitro in ERalpha positive cells but its association with ERalpha negative status in-vivo raising the possibility that S100A7 might be regulated by ERbeta in breast cancer. Using doxycycline-inducible ERbeta and ERalpha expressing MCF-7 cells the hypothesis that psoriasin/S100A7 is ERbeta regulated was investigated To explore the relationship between psoriasin/S100A7 and ERbeta expression in-vivo, we also assessed a cohort of 233 ERalpha negative breast tumors using tissue microarrays and immunohistochemistry. Psoriasin/S100A7 was increased by 17beta-estradiol (E2) following ERbeta induction, in several clones of ERbeta over-expressing but not in the original MCF-7 cells, nor clones over-expressing ERalpha.
View Article and Find Full Text PDFSeveral different antibodies to total estrogen receptor (ER)beta, ERbeta1 and ERbeta2/cx have been tested and compared for their ability to immunoprecipitate ERbeta specific isoforms under chromatin immunoprecipitation conditions (ChIP). The rabbit polyclonal antibodies AP-ERbeta1 and AP-ERbeta2/cx, specific for ERbeta1 and ERbeta2/cx isoforms, respectively, were the most efficient for ChIP. The monoclonal antibody MCA1974/PPG5/10 was also able to ChIP ERbeta1, but less efficiently than AP-ERbeta1.
View Article and Find Full Text PDF