The purpose of the present study was to assess the nutritional value of yeast culture (YC) and to explore the effect of YC on growth performance and health of piglets fed low-protein diets. In Exp. 1, 12 growing barrows were allocated into control diet and YC diet treatments to determine the available energy of YC.
View Article and Find Full Text PDFmiR-21, as an oncogene that overexpresses in most human tumors, is involved in radioresistance; however, the mechanism remains unclear. Here, we demonstrate that miR-21-mediated radioresistance occurs through promoting repair of DNA double strand breaks, which includes facilitating both non-homologous end-joining (NHEJ) and homologous recombination repair (HRR). The miR-21-promoted NHEJ occurs through targeting (a novel target of miR-21), which affects the CRY2/PP5 pathway and in turn increases DNA-PKcs activity.
View Article and Find Full Text PDFCancer Biother Radiopharm
September 2013
MicroRNAs (miRNAs) are a class of endogenous molecules that post-transcriptionally regulate target gene expression and play an important role in many developmental processes. Matrix extracellular phosphoglycoprotein (MEPE) is related to bone metabolism. We recently reported that MEPE protects cells from DNA damage-induced killing.
View Article and Find Full Text PDFCancer Biother Radiopharm
June 2011
MicroRNAs (miRNAs) are posttranscriptional modulators of gene expression and play an important role in many developmental processes. Recent studies suggest roles of miRNAs in carcinogenesis. Fragile histidine triad (FHIT) gene deletion, methylation, and reduced Fhit protein expression occur in about 70% of human epithelial tumors and are clearly associated with tumor progression.
View Article and Find Full Text PDFNucleic Acids Res
December 2009
Matrix extracellular phosphoglycoprotein/osteoblast factor 45 (MEPE/OF45) was cloned in 2000 with functions related to bone metabolism. We identified MEPE/OF45 for the first time as a new co-factor of CHK1 in mammalian cells to protect cells from DNA damage induced killing. We demonstrate here that MEPE/OF45 directly interacts with CHK1.
View Article and Find Full Text PDFInt J Radiat Biol
June 2009
Purpose: To study whether fragile histidine triad (Fhit) prevents IR-induced hypoxanthineguanine phosphoribosyltransferase (HPRT) mutation and whether Fhit plays any role in preventing HPRT mutation through low dose-induced adaptive response.
Materials And Methods: Establishing human cell lines with or without Fhit expression by making constructs expressing hemagglutinin (HA) alone or HA-Fhit fusion protein and transfecting the vector to HeLa cells. The effects of Fhit on ionising radiation (IR)-induced mutation were examined by observing HPRT mutation rates in the established cell lines following different doses of IR.
Fragile histidine triad (FHIT) gene deletion or promoter methylation and reduced Fhit protein expression occur in approximately 70% of human epithelial tumors and, in some cancers, are clearly associated with tumor progression. Specific Fhit signal pathways have not been identified. We previously reported that compared with Fhit+/+ cells, Fhit-/- cells with an overactivated ATR/CHK1 pathway show increased mutation frequency and resistance to DNA damage-induced killing, indicating that Fhit and the CHK1 pathway have opposing roles in cells responding to DNA damage.
View Article and Find Full Text PDFCHK1 is one of the most important checkpoint proteins in mammalian cells for responding to DNA damage. Cells defective in CHK1 are sensitive to ionizing radiation (IR). The mechanism by which CHK1 protects cells from IR-induced killing remains unclear.
View Article and Find Full Text PDFDNA damage-induced S phase (S) checkpoint includes inhibition of both replicon initiation and chain elongation. The precise mechanism for controlling the two processes remains unclear. In this study, we showed that Hus1-deficient mouse cells had an impaired S checkpoint after exposure to DNA strand break-inducing agents such as camptothecin (CPT) (>or=1.
View Article and Find Full Text PDFInduction of checkpoint responses in G1, S, and G2 phases of the cell cycle after exposure of cells to ionizing radiation (IR) is essential for maintaining genomic integrity. Ataxia telangiectasia mutated (ATM) plays a key role in initiating this response in all three phases of the cell cycle. However, cells lacking functional ATM exhibit a prolonged G2 arrest after IR, suggesting regulation by an ATM-independent checkpoint response.
View Article and Find Full Text PDFAfter exposure to genotoxic stress, proliferating cells actively slow down the DNA replication through a S-phase checkpoint to provide time for repair. We report that in addition to the ataxia-telangiectasia mutated (ATM)-dependent pathway that controls the fast response, there is an ATM-independent pathway that controls the slow response to regulate the S-phase checkpoint after ionizing radiation in mammalian cells. The slow response of S-phase checkpoint, which is resistant to wortmannin, sensitive to caffeine and UCN-01, and related to cyclin-dependent kinase phosphorylation, is much stronger in CHK1 overexpressed cells, and it could be abolished by Chk1 antisense oligonucleotides.
View Article and Find Full Text PDF