Publications by authors named "Baocheng Guo"

Article Synopsis
  • Whole-genome duplication (WGD) plays a crucial role in biodiversity, but its establishment is often seen as random due to the complexities involved in understanding the processes behind it.
  • This study examined the processes of WGD in snow carp from the Tibetan Plateau, finding that multiple instances of autopolyploidization occurred both after and leading to speciation events.
  • The research challenges the idea that ancient polyploidization initiated snow carp diversification by showing that recent WGD events, influenced by environmental changes like the uplift of the Tibetan Plateau and climate shifts, significantly contributed to their evolutionary processes.
View Article and Find Full Text PDF

Selenium (Se)-rich farmland is a valuable and nonrenewable resource for addressing the global challenge of Se deficiency. However, frequent warnings of heavy metal pollution have threatened the safety and legitimacy of Se-rich functional agriculture, eventually damaged public health security. Definitive and judgmental quantitative studies on this hazardous phenomenon are still missing.

View Article and Find Full Text PDF

Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously.

View Article and Find Full Text PDF

Scale morphology represents a fundamental feature of fish and a key evolutionary trait underlying fish diversification. Despite frequent and recurrent scale loss throughout fish diversification, comprehensive genome-wide analyses of the genomic signatures associated with scale loss in divergent fish lineages remain scarce. In the current study, we investigated genome-wide signatures, specifically convergent protein-coding gene loss, amino acid substitutions, and cis-regulatory sequence changes, associated with recurrent scale loss in two divergent Cypriniformes lineages based on large-scale genomic, transcriptomic, and epigenetic data.

View Article and Find Full Text PDF

How many species of life are there on Earth? This is a question that we want to know but cannot yet answer. Some scholars speculate that the number of species may reach 2.2 billion when considering cryptic diversity and that each morphology-based insect species may contain an average of 3.

View Article and Find Full Text PDF

Background: The common carp (Cyprinus carpio) might best represent the domesticated allopolyploid animals. Although subgenome divergence which is well-known to be a key to allopolyploid domestication has been comprehensively characterized in common carps, the link between genetic architecture underlying agronomic traits and subgenome divergence is unknown in the selective breeding of common carps globally.

Results: We utilized a comprehensive SNP dataset in 13 representative common carp strains worldwide to detect genome-wide genetic variations associated with scale reduction, vibrant skin color, and high growth rate in common carp domestication.

View Article and Find Full Text PDF

The uplift of the Tibetan Plateau significantly altered the geomorphology and climate of the Euroasia by creating large mountains and rivers. Fishes are more likely to be affected relative to other organisms, as they are largely restricted to river systems. Faced with the rapidly flowing water in the Tibetan Plateau, a group of catfish has evolved greatly enlarged pectoral fins with more numbers of fin-rays to form an adhesive apparatus.

View Article and Find Full Text PDF

New mutations and standing genetic variations contribute significantly to repeated phenotypic evolution in sticklebacks. However, less is known about the role of introgression in this process. We analyzed taxonomically and geographically comprehensive genomic data from Pungitius sticklebacks to decipher the extent of introgression and its consequences for the diversification of this genus.

View Article and Find Full Text PDF

Genetic differentiation in aquatic organisms is usually shaped by drainage connectivity. Sympatric aquatic species are thus expected to show similar population differentiation patterns and similar genetic responses to their habitats. Water bodies on the Qinghai-Tibet Plateau (QTP) have recently experienced dramatic physicochemical changes, threatening the biodiversity of aquatic organisms on the "roof of the world.

View Article and Find Full Text PDF

In his influential book "", Ohno postulated that frameshift mutation could lead to a new function after duplication, but frameshift mutation is generally thought to be deleterious, and thus drew little attention in functional innovation in duplicate evolution. To this end, we here report an exhaustive survey of the genomes of human, mouse, zebrafish, and fruit fly. We identified 80 duplicate genes that involved frameshift mutations after duplication.

View Article and Find Full Text PDF

Background: Gene duplication and alternative splicing (AS) are two distinct mechanisms generating new materials for genetic innovations. The evolutionary link between gene duplication and AS is still controversial, due to utilizing duplicates from inconsistent ages of duplication events in earlier studies. With the aid of RNA-seq data, we explored evolutionary scenario of AS divergence between duplicates with ohnologs that resulted from the teleost genome duplication event in zebrafish, medaka, and stickleback.

View Article and Find Full Text PDF

Repeated and independent adaptation to specific environmental conditions from standing genetic variation is common. However, if genetic variation is limited, the evolution of similar locally adapted traits may be restricted to genetically different and potentially less optimal solutions or prevented from happening altogether. Using a quantitative trait locus (QTL) mapping approach, we identified the genomic regions responsible for the repeated pelvic reduction (PR) in three crosses between nine-spined stickleback populations expressing full and reduced pelvic structures.

View Article and Find Full Text PDF

The degree to which adaptation to similar selection pressures is underlain by parallel versus non-parallel genetic changes is a topic of broad interest in contemporary evolutionary biology. Sticklebacks provide opportunities to characterize and compare the genetic underpinnings of repeated marine-freshwater divergences at both intra- and interspecific levels. While the degree of genetic parallelism in repeated marine-freshwater divergences has been frequently studied in the three-spined stickleback (Gasterosteus aculeatus), much less is known about this in other stickleback species.

View Article and Find Full Text PDF

Schizothoracins are a group of cyprinid fishes distributed throughout the Qinghai-Tibet Plateau, which can be classified in three grades: primitive, specialised and highly specialised according to adaptation ability to plateau environments. As the only specialised schizothoracins in Xinjiang, China, and are ideal materials for adaptive evolution research. Based on single-nucleotide polymorphism (SNP) loci detected by specific-locus amplified fragment (SLAF) technology, the genome-wide genetic diversities of these two species from nine sites in Xinjiang were evaluated.

View Article and Find Full Text PDF

Whole genome duplication (WGD) is commonly believed to play key roles in vertebrate evolution. However, nowadays polyploidy exists in a few fish, amphibian and reptile groups only, and seems to be an evolutionary dead end in vertebrates. We investigate the evolutionary significance of polyploidization in Cyprinidae-a fish family that contains more polyploid species than any other vertebrate group-with integrated biogeographic, phylogenetic and genomic analyses.

View Article and Find Full Text PDF

The Gasterosteidae fish family hosts several species that are important models for eco-evolutionary, genetic, and genomic research. In particular, a wealth of genetic and genomic data has been generated for the three-spined stickleback (Gasterosteus aculeatus), the "ecology's supermodel," whereas the genomic resources for the nine-spined stickleback (Pungitius pungitius) have remained relatively scarce. Here, we report a high-quality chromosome-level genome assembly of P.

View Article and Find Full Text PDF

Hybridization and convergent evolution are phenomena of broad interest in evolutionary biology, but their occurrence poses challenges for reconstructing evolutionary affinities among affected taxa. Sticklebacks in the genus Pungitius are a case in point: evolutionary relationships and taxonomic validity of different species and populations in this circumpolarly distributed species complex remain contentious due to convergent evolution of traits regarded as diagnostic in their taxonomy, and possibly also due to frequent hybridization among taxa. To clarify the evolutionary relationships among different Pungitius species and populations globally, as well as to study the prevalence and extent of introgression among recognized species, genomic data sets of both reference genome-anchored single nucleotide polymorphisms and de novo assembled RAD-tag loci were constructed with RAD-seq data.

View Article and Find Full Text PDF

Background: Genomic tools are increasingly being used on non-model organisms to provide insights into population structure and variability, including signals of selection. However, most studies are carried out in regions with distinct environmental gradients or across large geographical areas, in which local adaptation is expected to occur. Therefore, the focus of this study is to characterize genomic variation and selective signals over short geographic areas within a largely homogeneous region.

View Article and Find Full Text PDF

Gene duplication generates new genetic material which, if retained after duplication, may contribute to organismal evolution. A whole-genome duplication occurred in the ancestry of teleost fish and consequently there are many duplicated genes in teleost genomes. Indeed, it has been proposed that the evolutionary diversification of teleost fish may have been stimulated by the fish-specific genome duplication (FSGD).

View Article and Find Full Text PDF

Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small-effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine-spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL-mapping approaches based on a de-biased LASSO method.

View Article and Find Full Text PDF

Recent studies of humans, dogs and rodents have started to discover the genetic underpinnings of high altitude adaptations, yet amphibians have received little attention in this respect. To identify possible signatures of adaptation to altitude, we performed a genome scan of 15 557 single nucleotide polymorphisms (SNPs) obtained with restriction site-associated DNA sequencing of pooled samples from 11 populations of Andrew's toad (Bufo andrewsi) from the edge of the Tibetan Plateau, spanning an altitudinal gradient from 1690 to 2768 m.a.

View Article and Find Full Text PDF

Heritable phenotypic differences between populations, caused by the selective effects of distinct environmental conditions, are of commonplace occurrence in nature. However, the actual genomic targets of this kind of selection are still poorly understood. We conducted a quantitative trait locus (QTL) mapping study to identify genomic regions responsible for morphometric differentiation between genetically and phenotypically divergent marine and freshwater nine-spined stickleback (Pungitius pungitius) populations.

View Article and Find Full Text PDF

Detecting and estimating the degree of genetic differentiation among populations of highly mobile marine fish having pelagic larval stages is challenging because their effective population sizes can be large, and thus, little genetic drift and differentiation is expected in neutral genomic sites. However, genomic sites subject to directional selection stemming from variation in local environmental conditions can still show substantial genetic differentiation, yet these signatures can be hard to detect with low-throughput approaches. Using a pooled RAD-seq approach, we investigated genomewide patterns of genetic variability and differentiation within and among 20 populations of Atlantic herring in the Baltic Sea (and adjacent Atlantic sites), where previous low-throughput studies and/or studies based on few populations have found limited evidence for genetic differentiation.

View Article and Find Full Text PDF

The complete mitochondrial genome of the Sakhalin nine-spined stickleback was determined using Illumina paired-end sequencing of genomic DNA. The genome sequence was 16 481 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a control region. The content and arrangement of the genes were identical to those of other Gasterosteidae species.

View Article and Find Full Text PDF