Brain-computer interface (BCI) technology bridges the direct communication between the brain and machines, unlocking new possibilities for human interaction and rehabilitation. EEG-based motor imagery (MI) plays a pivotal role in BCI, enabling the translation of thought into actionable commands for interactive and assistive technologies. However, the constrained decoding performance of brain signals poses a limitation to the broader application and development of BCI systems.
View Article and Find Full Text PDFElectroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals.
View Article and Find Full Text PDFRegular screening for cervical cancer is one of the best tools to reduce cancer incidence. Automated cell segmentation in screening is an essential task because it can present better understanding of the characteristics of cervical cells. The main challenge of cell cytoplasm segmentation is that many boundaries in cell clumps are extremely difficult to be identified.
View Article and Find Full Text PDFComput Math Methods Med
November 2021
The task of segmenting cytoplasm in cytology images is one of the most challenging tasks in cervix cytological analysis due to the presence of fuzzy and highly overlapping cells. Deep learning-based diagnostic technology has proven to be effective in segmenting complex medical images. We present a two-stage framework based on Mask RCNN to automatically segment overlapping cells.
View Article and Find Full Text PDFComput Math Methods Med
March 2021
Electroencephalography (EEG) plays an import role in monitoring the brain activities of patients with epilepsy and has been extensively used to diagnose epilepsy. Clinically reading tens or even hundreds of hours of EEG recordings is very time consuming. Therefore, automatic detection of seizure is of great importance.
View Article and Find Full Text PDFComput Math Methods Med
April 2021
Magnetic resonance (MR) images are often contaminated by Gaussian noise, an electronic noise caused by the random thermal motion of electronic components, which reduces the quality and reliability of the images. This paper puts forward a hybrid denoising algorithm for MR images based on two sparsely represented morphological components and one residual part. To begin with, decompose a noisy MR image into the cartoon, texture, and residual parts by MCA, and then each part is denoised by using Wiener filter, wavelet hard threshold, and wavelet soft threshold, respectively.
View Article and Find Full Text PDFComput Math Methods Med
March 2021
The detection of recorded epileptic seizure activity in electroencephalogram (EEG) segments is crucial for the classification of seizures. Manual recognition is a time-consuming and laborious process that places a heavy burden on neurologists, and hence, the automatic identification of epilepsy has become an important issue. Traditional EEG recognition models largely depend on artificial experience and are of weak generalization ability.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
December 2015
Electrocardiogram (ECG) signals are susceptible to be disturbed by 50 Hz power line interference (PLI) in the process of acquisition and conversion. This paper, therefore, proposes a novel PLI removal algorithm based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD). Firstly, according to the morphological differences in ECG waveform characteristics, the noisy ECG signal was decomposed into the mutated component, the smooth component and the residual component by MCA.
View Article and Find Full Text PDF