Parallel evolution of the same, or at least very similar, phenotype(s) in different lineages is often interpreted as evidence for the action of natural selection. However, caution is required when inferring parallel evolution based on uncertain or potentially incorrect phylogenetic frameworks. Here, by conducting extensive phylogenomic and population genetic analyses, we aim to clarify the evolutionary history of spurless taxa within the Aquilegia ecalcarata complex.
View Article and Find Full Text PDFHow organisms respond to environmental stress is a key topic in evolutionary biology. This study focused on the genomic evolution of Laburnicola rhizohalophila, a dark-septate endophytic fungus from roots of a halophyte. Chromosome-level assemblies were generated from five representative isolates from structured subpopulations.
View Article and Find Full Text PDFAddressing global biodiversity loss requires an expanded focus on multiple dimensions of biodiversity. While most studies have focused on the consequences of plant interspecific diversity, our mechanistic understanding of how genetic diversity within plant species affects plant productivity remains limited. Here, we use a tree species × genetic diversity experiment to disentangle the effects of species diversity and genetic diversity on tree productivity, and how they are related to tree functional diversity and trophic feedbacks.
View Article and Find Full Text PDFAncient whole-genome duplications (WGDs or polyploidy) are prevalent in plants, and some WGDs occurred during the timing of severe global environmental changes. It has been suggested that WGDs may have contributed to plant adaptation. However, this still lacks empirical evidence at the genetic level to support the hypothesis.
View Article and Find Full Text PDFSchima superba is an important dominant species in subtropical evergreen broadleaved forests of China, and plays a vital role in community structure and dynamics. However, the survival rate of its seedlings in the field is low, and water shortage could be a factor that limits its regeneration. In order to better understand the response of its seedlings to drought stress on a functional genomics scale, RNA-seq technology was utilized in this study to perform a large-scale transcriptome sequencing of the S.
View Article and Find Full Text PDF