Stacked semiconducting nanosheets (SSNs), which feature strong in-plane covalent bonds but weak van der Waals (vdWs) interactions between adjacent layers, hold substantial promise in next-generation, printable, and flexible devices. Among them, SSN-based transistors with high current multiplication offer significant potential for large-area, high-integration electronics and biomedical applications. However, the three-terminal configuration of the transistor inevitably increases the process step and power unit.
View Article and Find Full Text PDFElectrophysiological (EP) signals, referred to as low-level biopotentials driven by active or passive human movements, are of great importance for kinesiology, rehabilitation, and human-machine interaction. To capture high-fidelity EP signals, bioelectrodes should possess high conductivity, high stretchability, and high conformability to skin. While traditional metal bioelectrodes are endowed with stretchability via complex structural designs, they are vulnerable to external or internal inference due to their low fracture strain and large modulus.
View Article and Find Full Text PDF