In contrast to the Dirac-cone materials in which the low-energy spectrum features a pseudospin-1/2 structure, Lieb and Dice lattices both host triply degenerate low-energy excitations. Here, we discuss moiré structures involving twisted bilayers of these lattices, which are shown to exhibit a tunable number of isolated flat bands near the Fermi level due to the bipartite nature of their structures. These flat bands remain isolated from the high-energy bands even in the presence of small higher-order terms and chiral-symmetry-breaking interlayer tunneling.
View Article and Find Full Text PDFTemperature regulates nonradiative processes in luminescent materials, fundamental to luminescence nanothermometry. However, elevated temperatures often suppress the radiative process, limiting the sensitivity of thermometers. Here, we introduce an approach to populating the excited state of lanthanides at elevated temperatures, resulting in a sizable lifetime lengthening and intensity increase of the near-infrared (NIR)-II emission.
View Article and Find Full Text PDFWith the miniaturization and high integration of electronic devices, high-performance thermally conductive composites have received increasing attention. The construction of hierarchical structures is an effective strategy to reduce interfacial thermal resistance and enhance composite thermal conductivity. In this study, by decorating carbon fibers (CF) with needle-like ZnO nanowires, hierarchical hybrid fillers (CF@ZnO) were rationally designed and synthesized using the hydrothermal method, which was further used to construct oriented aligned filler networks via the simple freeze-casting process.
View Article and Find Full Text PDFWith the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have become of increasing interest. Traditionally, higher filler fractions are required to obtain a high thermal conductivity, but this leads to a decrease in the mechanical properties of the composites and increases the cost. In this study, silicon nitride nanowires (SiNNWs) with high aspect ratios were successfully prepared by a modified carbothermal reduction method, which was further combined with AlN particles to prepare the epoxy-based composites.
View Article and Find Full Text PDFThe family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently,TaAs2, a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the (2‾01) surface, along with the presence of extreme MR observed from magneto-transport measurements.
View Article and Find Full Text PDFBy depositing silver nanoparticles (AgNPs) on the surface of aluminum nitride whiskers (AlNw), an AlNw-AgNPs heterogeneous structural filler was rationally designed from the perspective of interface engineering, which was further combined with nanofibrillated cellulose (NFC) to prepare anisotropic composite films by a facile vacuum-assited filtration method. Due to the synergistic effect of cross-linking AlNw and "thermal conducting micro-bridges" of AgNPs, the composite films exhibited an extraordinary in-plane thermal conductivity of 31.329 W m K, showing a promising application as thermal management materials.
View Article and Find Full Text PDFBackground: Smartphone addiction has been found to be a widespread public health issue, especially among youth. Previous studies reported a significant association between anxiety and smartphone addiction, but the underlying mechanism in this relationship is unclear. The purpose of this study was to investigate the mediating roles of boredom proneness and self-control in the relationship between anxiety and smartphone addiction.
View Article and Find Full Text PDFFibre-optical microendoscopy is based on fibre-optical confocal scanning microscopy, where optical fibres are introduced for delivery of the source and collection of the signal. Fibre-optical microendoscopy has led to innovations in imaging of freely moving animals, long-term imaging, minimally invasive diagnostics, and microsurgery. The lens system in fibre-optical microendoscopy is significant because of the imaging resolution and miniaturisation possibility.
View Article and Find Full Text PDFThe rare-earth monopnictide family is attracting an intense current interest driven by its unusual extreme magnetoresistance (XMR) property and the potential presence of topologically non-trivial surface states. The experimental observation of non-trivial surface states in this family of materials are not ubiquitous. Here, using high-resolution angle-resolved photoemission spectroscopy, magnetotransport, and parallel first-principles modeling, we examine the nature of electronic states in HoSb.
View Article and Find Full Text PDFThe topological nodal-line semimetal (TNS) is a unique class of materials with a one dimensional line node accompanied by a nearly dispersionless two-dimensional surface state. However, a direct observation of the so called drumhead surface state within current nodal-line materials is still elusive. Here, using high-resolution angle-resolved photoemission spectroscopy (ARPES) along with first-principles calculations, we report the observation of a topological nodal-loop (TNL) in SrAs, whereas CaAs exhibits a topologically trivial state.
View Article and Find Full Text PDFProximity effects in superconducting normal (SN) material heterostructures with metals and semiconductors have long been observed and theoretically described in terms of Cooper pair wave functions and Andreev reflections. Whereas the semiconducting -layer materials in the proximity experiments to date have been doped and tens of nanometers thick, we present here a proximity tunneling study involving a pristine single-layer transition-metal dichalcogenide film of MoS placed on top of a Pb thin film. Scanning tunneling microscopy and spectroscopy experiments together with parallel theoretical analysis based on electronic structure calculations and Green's function modeling allow us to unveil a two-step process in which MoS first becomes metallic and then is induced into becoming a conventional s-wave Bardeen-Cooper-Schrieffer-type superconductor.
View Article and Find Full Text PDFTopological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room temperature magnet CoMnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic phase.
View Article and Find Full Text PDFThe growing demands of brain science and artificial intelligence create an urgent need for the development of artificial neural networks (ANNs) that can mimic the structural, functional and biological features of human neural networks. Nanophotonics, which is the study of the behaviour of light and the light-matter interaction at the nanometre scale, has unveiled new phenomena and led to new applications beyond the diffraction limit of light. These emerging nanophotonic devices have enabled scientists to develop paradigm shifts of research into ANNs.
View Article and Find Full Text PDFA new scheme of super-resolution optical fluctuation imaging (SOFI) is proposed to broaden its application in the high-order case by separating the elimination of shot noise from the computation of cumulant, applying the low-pass denoising (LPD) operator to SOFI. The high-order cumulants are derived from a basic recursion of moments with the suppression of shot noise by the LPD on raw data. SOFI based on LPD (LPD-SOFI) demonstrates a 10.
View Article and Find Full Text PDFTopological semimetals can be classified by the connectivity and dimensionality of the band crossings in momentum space. The band crossings of a Dirac, Weyl, or an unconventional fermion semimetal are zero-dimensional (0D) points, whereas the band crossings of a nodal-line semimetal are one-dimensional (1D) closed loops. Here we propose that the presence of perpendicular crystalline mirror planes can protect three-dimensional (3D) band crossings characterized by nontrivial links such as a Hopf link or a coupled chain, giving rise to a variety of new types of topological semimetals.
View Article and Find Full Text PDFRecent progress in the synthesis of monolayer MoS, a two-dimensional direct band-gap semiconductor, is paving new pathways toward atomically thin electronics. Despite the large amount of literature, fundamental gaps remain in understanding electronic properties at the nanoscale. Here, we report a study of highly crystalline islands of MoS grown via a refined chemical vapor deposition synthesis technique.
View Article and Find Full Text PDFObjective: To observe the clinical efficacy and safety on moderate and severe persistent allergic rhinitis treated with acupuncture.
Methods: Sixty-six patients of moderate and severe persistent allergic rhinitis were randomized into an acupuncture group (34 cases) and a western medication group (32 cases). In the acupuncture, group, acupuncture was applied to Dazhui (GV 14), Feishu (BL 13), Pishu (BL 20), Ganshu (BL 18) and Shenshu (BL 23) in the prone, retained for 20 min; then in the supine, at Baihui (GV 20), Yintang (GV 29), yingxiang (LI20) Taichong (LR 3) and Hegu (LI 4), retained for 20 min.
The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature and demonstrates a novel type of anomalous surface state, the Fermi arc. Like topological insulators, the bulk topological invariants of a Weyl semimetal are uniquely fixed by the surface states of a bulk sample. Here we present a set of distinct conditions, accessible by angle-resolved photoemission spectroscopy (ARPES), each of which demonstrates topological Fermi arcs in a surface state band structure, with minimal reliance on calculation.
View Article and Find Full Text PDFA Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal's boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space.
View Article and Find Full Text PDFTopological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2016
Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs.
View Article and Find Full Text PDFWe predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror Chern numbers, indicating that the system can host topologically protected edge states.
View Article and Find Full Text PDFA Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles and admits a topological classification that protects Fermi arc surface states on the boundary of a bulk sample. This unusual electronic structure has deep analogies with particle physics and leads to unique topological properties. We report the experimental discovery of a Weyl semimetal, tantalum arsenide (TaAs).
View Article and Find Full Text PDF