Publications by authors named "BaoBao Chen"

To address the technical limitations of automatic coal and gangue detection technology in fully mechanized top coal caving mining operations, the low radiation level radioactivity measurement method is utilized to assess the degree of coal-gangue mixture in top coal caving process. This approach is based on the distinguishing radiation characteristics of natural γ-rays between coal and gangue. This study analyzed the distribution characteristics of natural γ-rays in coal and rock layers of thick coal seams and the applicability of this method, introduced the basic principle of coal-gangue detection technology based on natural γ-ray, developed the test system about automatic coal-gangue detection, studied the radiation characteristics of coal and gangue, proposed determination model of the coal-gangue mixed degree, combined with the time sequence characteristics of the top coal's releasing flow and the energy spectrum characteristics of different layers of rock, realized the precise coal-gangue detection technology in complex structure thick coal seam with multiple gangue.

View Article and Find Full Text PDF

Stapled peptides are regarded as the promising next-generation therapeutics because of their improved secondary structure, membrane permeability and metabolic stability as compared with the prototype linear peptides. Usually, stapled peptides are obtained by a hydrocarbon stapling technique, anchoring from paired olefin-terminated unnatural amino acids and the consequent ring-closing metathesis (RCM). To investigate the adaptability of the rigid cyclobutane structure in RCM and expand the chemical diversity of hydrocarbon peptide stapling, we herein described the rational design and efficient synthesis of cyclobutane-based conformationally constrained amino acids, termed ()-1-amino-3-(but-3-en-1-yl)cyclobutane-1-carboxylic acid (E) and ()-1-amino-3-(but-3-en-1-yl)cyclobutane-1-carboxylic acid (Z).

View Article and Find Full Text PDF

The identification of novel candidate molecules with the potential to revolutionize the treatment of breast cancer holds profound clinical significance. Macropin (Mac)-1, derived from the venom of wild bees, emerges as an auspicious therapeutic agent for combating breast cancers. Nevertheless, linear peptides have long grappled with the challenges of traversing cell membranes and succumbing to protease hydrolysis.

View Article and Find Full Text PDF

Wnt signaling plays an important role in many biological processes such as stem cell self-renewal, cell proliferation, migration, and differentiation. The β-catenin-dependent signaling pathway mainly regulates cell proliferation, differentiation, and migration. In the Wnt/β-catenin signaling pathway, the Wnt family ligands transduce signals through LRP5/6 and Frizzled receptors to the Wnt/β-catenin signaling cascades.

View Article and Find Full Text PDF

In mammals, a vast majority of ovarian follicles undergo atresia, which is caused by granulosa cell (GC) apoptosis. GCs in follicles are exposed to low oxygen. Hypoxia triggers reactive oxygen species (ROS) generation, which leads to cell oxidative stress and apoptosis.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of extracellular-signal-regulated kinase (ERK1/2) in early mouse embryo development, focusing on how it influences zygotic reprogramming during the first cell cycle after fertilization.
  • Researchers used a small molecule inhibitor to deactivate ERK1/2 in zygotes, assessing the effects on epigenetic modifications like H3K9me2 and 5mC, as well as development potential.
  • Findings indicate that inhibiting ERK1/2 leads to abnormal accumulation of H3K9me2 and 5mC, reducing the developmental competence of embryos and disrupting the balance of epigenetic markers from both parents.
View Article and Find Full Text PDF

Background: In mammals, maternal gene products decay and zygotic genome activation (ZGA) during maternal to zygotic transition (MZT) is critical for the early embryogenesis. Y-box binding protein YBX1 plays vital roles in RNA stabilization and transcriptional regulation, but its roles remain to be elucidated during pre-implantation development.

Methods: In the present study, we re-analyzed transcriptional level of YBX1 in mice, human, bovine, and goat embryos using public RNA-seq datasets.

View Article and Find Full Text PDF

Developmental arrest of somatic cell nuclear transfer (SCNT) embryos first occurs at zygotic/embryonic genome activation (ZGA/EGA), which is critical for preimplantation development. However, study on transcriptome of SCNT embryos during ZGA/EGA is limited. In the present study, we performed RNA sequencing (RNA-seq) of the eight-cell SCNT embryos in goat and provide cross-species analysis of transcriptional activity of SCNT embryos during ZGA/EGA in mice, human, bovine, and goat.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are involved in shaping chromosome conformation and regulation of preimplantation development. However, the role of lncRNA during somatic cell nuclear transfer (SCNT) reprogramming remains largely unknown. In the present study, we identified 114 upregulated lncRNAs in the 8-cell SCNT embryos as candidate key molecules involved in nuclear reprogramming in goat.

View Article and Find Full Text PDF

The ATP-adenosine pathway has been recently identified as an attractive immune-oncology target and several drug candidates have been entered clinic trials. Inspired by the report of the first small-molecule CD73inhibitor AB680, we describe the discovery of natural product ellagic acid as a dual CD73 and CD39 inhibitor with an IC value of 1.85 ± 0.

View Article and Find Full Text PDF

Active natural productscan be valuable lead compounds and numerous drugs derived from natural products have successfully entered the clinic. Arenobufagin, one of the important active components of toad venom, indicates significant antitumor activities with limited preclinical development for its strong cardiotoxicity. Ten 3-monopeptide substituted arenobufagin derivatives have been designed and synthesized.

View Article and Find Full Text PDF

Maternal mRNA clearance is critical for the early embryo development, which is under the tight control of RNA N6-methyladenosine (mA). However, little information is known regarding the maternal mRNA clearance and mechanisms behind it in farm animals. In the present study, 3362 differentially expressed genes (DEGs) were found during the maternal-to-zygotic transition (MZT) and determined as maternal mRNAs in goat.

View Article and Find Full Text PDF

The aim of the study was to investigate the continuous changing pattern of H4K12 acetylation, and the expression levels of histone acetyltransferases (HATs) and histone deacetyltransferases (HDACs) in mouse oocytes during meiosis and after parthenogenetic activation (PA). The immunofluorescence results showed hyperacetylation of lysine-12 on histone H4 (H4K12) in the germinal vesicle (GV) oocytes that then decreased during germinal vesicle breakdown (GVBD), and disappeared in metaphase II (MII). However, it reappeared in the early 1-cell embryos derived after 4 h of PA.

View Article and Find Full Text PDF

(20S,21S)-7-Cyclohexyl-21-fluorocamptothecin was discovered by a fluorine drug design strategy with potent antitumor activity and increased metabolic stability. In continuous efforts to find novel antitumor agents derived from natural product camptothecin, 20-carbamates of the active compound (20S,21S)-7-cyclohexyl-21-fluorocamptothecin have been designed and synthesized. Among them, one compound with the diethylamino group showed greater antiproliferative activity than the other 20-carbamate derivatives.

View Article and Find Full Text PDF

In somatic cell nuclear transfer (SCNT) embryos, developmental defects first appear at the time of zygotic genome activation (ZGA), a process that is under the control of DNA and histone methylation. However, dynamics of 5-mC and 5-hmC during ZGA differ between porcine and bovine SCNT embryos, and histone methylation during ZGA in goat SCNT embryos remains poorly understood. Therefore, in the present study, we investigated the dynamic changes of 5-mC, 5-hmC, H3K4me2/3, and H3K9me3, as well as the expression of key genes related to these epigenetic modifications, during ZGA in goat cloned embryos.

View Article and Find Full Text PDF

DNA methylation inhibitor or loss and gain of function of DNA methylation key players were widely used to investigate the regulation of X inactive-specific transcript () expression by DNA methylation, which results in global change of DNA methylation. Here, we reported a novel method for regulation of using the widely used clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system. First, expression was increased in 5-aza-2'-deoxycytidine-treated female goat fibroblast cells.

View Article and Find Full Text PDF

Minor and major zygotic genome activation (ZGA) are crucial for preimplantation development. During this process, histone variants and methylation influence chromatin accessibility and consequently regulated the expression of zygotic genes. However, the detailed exchanges of these modifications during ZGA remain to be determined.

View Article and Find Full Text PDF
Article Synopsis
  • As follicles develop, granulosa cells (GCs) experience hypoxia due to increasing distance from blood vessels, potentially affecting their cell cycle.
  • Despite hypothesized impacts of hypoxia on cell cycle progression, GCs in growing follicles seem to maintain their ability to divide.
  • The study found that cobalt chloride (CoCl2) can hinder cell cycle advancement in porcine GCs under hypoxic-like conditions, but insulin-like growth factor-I (IGF-I) helps restore this progression by activating key cellular pathways.
View Article and Find Full Text PDF

Small molecules discovered during the recent years can be used to regulate the growth of embryonic stem cells (ES cells). Chicken blastodermal cells (cBCs) play an important role in both basic and transgenic researches as an important ES cell. However, the regulatory mechanism of small molecules involved in the self-renewal and pluripotency of cBCs remains unknown.

View Article and Find Full Text PDF

The nucleosome, the fundamental structural unit of chromatin, is a critical regulator of gene expression. The mechanisms governing changes to nucleosome occupancy and positioning during somatic cell reprogramming remain poorly understood. We established a method for generating genome-wide nucleosome maps of porcine embryonic fibroblasts (PEF), reconstructed 1-cell embryos generated by somatic cell nuclear transfer (SCNT), and fertilized zygotes (FZ) using MNase sequencing with only 1,000 cells.

View Article and Find Full Text PDF

We investigate a spin-to-charge conversion mechanism which maps the spin singlet and triplet states to two charge states differing by one electron mediated by an intermediate metastable charge state. This mechanism allows us to observe fringes in the spin-unblocked region beyond the triplet transition line in the measurement of the exchange oscillations between singlet and triplet states in a four-electron double quantum dot. Moreover, these fringes are amplified and π-phase shifted, compared with those in the spin blockade region.

View Article and Find Full Text PDF

The nucleosome is the basic structural unit of chromosomes, and its occupancy and distribution in promoters are crucial for the regulation of gene expression. During the growth process of porcine oocytes, the "growing" oocytes (SF) have a much higher transcriptional activity than the "fully grown" oocytes (BF). However, the chromosome status of the two kinds of oocytes remains poorly understood.

View Article and Find Full Text PDF

We experimentally demonstrate a tunable hybrid qubit in a five-electron GaAs double quantum dot. The qubit is encoded in the (1,4) charge regime of the double dot and can be manipulated completely electrically. More importantly, dot anharmonicity leads to quasiparallel energy levels and a new anticrossing, which help preserve quantum coherence of the qubit and yield a useful working point.

View Article and Find Full Text PDF

Objective: To apply the DNA barcoding technology for identification on host animal and to establish the host animal DNA bar code database on natural foci of plague in Shaanxi.

Methods: 139 host animals belonging to 3 orders, 6 families and 12 genera and 62 residues belonging to 7 species from 8 different parts of the province, were detected. DNA barcoding technology was used to analyze the DNA CO I gene sequence on the natural foci of plague in Dingbian county.

View Article and Find Full Text PDF