Publications by authors named "Bao-Yong Sha"

Understanding interactions between cell-penetrating peptides and biomembrane under tension can help improve drug delivery and elucidate mechanisms underlying fundamental cellular events. As far as the effect of membrane tension on translocation, it is generally thought that tension should disorder the membrane structure and weaken its strength, thereby facilitating penetration. However, our coarse-grained molecular dynamics simulation results showed that membrane tension can restrain polyarginine translocation across the asymmetric membrane and that this effect increases with increasing membrane tension.

View Article and Find Full Text PDF

Nanoparticles (NPs) are widely applied in nanomedicine and diagnostics based on the interactions between NPs and the basic barrier (biomembrane). Understanding the underlying mechanism of these interactions is important for enhancing their beneficial effects and avoiding potential nanotoxicity. Experimental, mathematical and numerical modeling techniques are involved in this field.

View Article and Find Full Text PDF

Objective: Obesity is becoming a worldwide health problem. The genome wide association (GWA) study particularly for body mass index (BMI) has not been successfully conducted in the Chinese. In order to identify novel genes for BMI variation in the Chinese, an initial GWA study and a follow up replication study were performed.

View Article and Find Full Text PDF

The widespread application of nanomaterials (NMs), which has accompanied advances in nanotechnology, has increased their chances of entering an organism, for example, via the respiratory system, skin absorption or intravenous injection. Although accumulating experimental evidence has indicated the important role of NM-biomembrane interaction in these processes, the underlying mechanisms remain unclear. Computational techniques, as an alternative to experimental efforts, are effective tools to simulate complicated biological behaviors.

View Article and Find Full Text PDF

Heart diseases, which are related to oxidative stress (OS), negatively affect millions of people from kids to the elderly. Titanium dioxide (TiO2) has widespread applications in our daily life, especially nanoscale TiO2. Compared to the high risk of particulate matter (≤2.

View Article and Find Full Text PDF

As pivotal immune guardians, B cells were found to be directly associated with the onset and development of many smoking-induced diseases. However, the in vivo molecular response of B cells underlying the female cigarette smoking remains unknown. Using the genome-wide Affymetrix HG-133A GeneChip microarray, we firstly compared the gene expression profiles of peripheral circulating B cells between 39 smoking and 40 non-smoking healthy US white women.

View Article and Find Full Text PDF

Poor femoral neck bone geometry at the femur is an important risk factor for hip fracture. We conducted a genome-wide association study (GWAS) of femoral neck bone geometry, examining approximately 379,000 eligible single-nucleotide polymorphisms (SNPs) in 1000 Caucasians. A common genetic variant, rs7430431 in the receptor transporting protein 3 (RTP3) gene, was identified in strong association with the buckling ratio (BR, P = 1.

View Article and Find Full Text PDF

To identify and validate genes associated with bone mineral density (BMD), which is a prominent osteoporosis risk factor, we tested 379,319 SNPs in 1000 unrelated white U.S. subjects for associations with BMD.

View Article and Find Full Text PDF

Obesity is a major public health problem characterized with high body mass index (BMI). Copy number variations (CNVs) have been identified to be associated with complex human diseases. The effect of CNVs on obesity is unknown.

View Article and Find Full Text PDF