Publications by authors named "Bao-Shan Wu"

The structure-dependent thermal stability of fullerene electron transport layers (ETLs) and its impact on device stability have been underrated for years. Based on cocrystallographic understanding, herein, we develop a thermally stable ETL comprising a hybrid layer of [6,6]-phenyl-C-butyric acid methyl ester (PCBM) and [6,6]-phenyl-C-propylbenzene (PCPB). By tuning the weight ratios of PCBM and PCPB to influence the noncovalent intermolecular interactions and packing of fullerene derivatives, we obtained a champion device based on the 20PCPB (20 wt % addition of PCPB into the mixture of PCBM/PCPB) ETL and excellent thermal stability of 500 h under 85 °C thermal aging in a N atmosphere in the dark.

View Article and Find Full Text PDF

Although some kinds of semiconductor metal oxides (SMOs) have been applied as electron selective layers (ESLs) for planar perovskite solar cells (PSCs), electron transfer is still limited by low electron mobility and defect film formation of SMO ESLs fabricated via low-temperature solution process. Herein, the C interlayer between TiO and (HC(NH)PbI)(CHNHPbCl) is prepared by spin-coating and low-temperature annealing for planar n-i-p PSCs. The resultant TiO/C ESL shows good surface morphology, efficient electron extraction, and facilitation of high-quality perovskite film formation, which can be attributed to the suitable nanosize and the superior electronic property of C molecules.

View Article and Find Full Text PDF

The genomic DNA from Ephedra glauca was randomly transferred to Saccharomyces cerevisiae and Hansenula anomala by argon and nitrogen ion implantation. Through repeated subculturing and using reversed phase high-performance liquid chromatography analysis to quantify the concentrations of the secondary metabolites, l-ephedrine and d-pseudoephedrine, 12 recombinant strains of genetically stable yeast were obtained, each using glucose as a carbon source, NaNO3 as a nitrogen source and producing l-ephedrine and/or d-pseudoephedrine. After culturing in liquid medium for 72 h, extracellular l-ephedrine and d-pseudoephedrine concentrations of 18.

View Article and Find Full Text PDF