The separation of chiral matter has garnered significant attention due to its wide-ranging applications in biological and chemical processes. In prior researches, particle interactions were predominantly repulsive, but the indiscriminate attraction among particles under attractive interactions makes the separation of mixtures more difficult. The question of whether chiral mixed particles, characterized by attractive effects, can undergo spontaneous separation, remains unresolved.
View Article and Find Full Text PDFThe dense active matter exhibits characteristics reminiscent of traditional glassy phenomena, yet the role of rotational inertia in glass dynamics remains elusive. In this study, we investigate the glass dynamics of chiral active particles influenced by rotational inertia. Rotational inertia endows exponential memory to particle orientation, restricting its alteration and amplifying the effective persistence time.
View Article and Find Full Text PDFThe dynamic behaviors, specifically trapping and sorting, of active particles interacting with periodic substrates have garnered significant attention. This study investigates numerically the trapping of soft, deformable particles on a periodic potential substrate, which can be experimentally verified through optical tweezers. The research demonstrates that multiple factors, including the relative size of traps, self-propelled velocity, shape parameters, ratio of particles to traps, and translational diffusion, can influence the trapping effect.
View Article and Find Full Text PDFTo maximize the survival chances of society members, collective self-organization must balance individual interests with promoting the collective welfare. Although situations where group members have equal optimal values are clear, how varying optimal values impacts group dynamics remains unclear. To address this gap, we conducted a self-optimization study of a binary system incorporating communication-enabled active particles with distinct optimal values.
View Article and Find Full Text PDFTraditional models for molecular (Brownian) motors predominantly depend on nonequilibrium driving, while particle interactions rigorously adhere to Newton's third law. However, numerous living and natural systems at various scales seem to defy this well-established law. In this study, we investigated the transport of mixed Brownian particles in a two-dimensional ratchet potential with nonreciprocal interactions.
View Article and Find Full Text PDFElectrical turbulence in the heart is considered the culprit of cardiac disease, including the fatal ventricular fibrillation. Optogenetics is an emerging technology that has the capability to produce action potentials of cardiomyocytes to affect the electric wave propagation in cardiac tissue, thereby possessing the potential to control the turbulence, by shining a rotating spiral pattern onto the tissue. In this paper, we present a method to reorder and synchronize electrical turbulence through optogenetics.
View Article and Find Full Text PDFThe two-dimensional melting of a binary mixture of cell tissues is numerically investigated in the presence of rigidity disparity. We present the full melting phase diagrams of the system by using the Voronoi-based cellular model. It is found that the enhancement of rigidity disparity can induce a solid-liquid transition at both zero temperature and finite temperature.
View Article and Find Full Text PDFThere is now growing evidence of collective turbulentlike motion of cells in dense tissues. However, how to control and harness this collective motion is an open question. We investigate the transport of deformable active cells in a periodically asymmetric channel by using a phase-field model.
View Article and Find Full Text PDFStochastic resetting causes kinetic phase transitions, whereas its underlying physical mechanism remains to be elucidated. We here investigate the anomalous transport of a particle moving in a chaotic system with a stochastic resetting and a rough potential and focus on how the stochastic resetting, roughness, and nonequilibrium noise affect the transports of the particle. We uncover the physical mechanism for stochastic resetting resulting in the anomalous transport in a nonlinear chaotic system: The particle is reset to a new basin of attraction which may be different from the initial basin of attraction from the view of dynamics.
View Article and Find Full Text PDFSpiral waves lead to dangerous arrhythmias in the cardiac system. In 2015 Burton et al. demonstrated the reversal of the spiral wave chirality through the rotating spiral-shaped illumination on the optogenetically modified cardiac monolayers.
View Article and Find Full Text PDFSoft Matter
February 2022
We investigate the transport of active polymer chains in steady laminar flows in the presence of thermal noise and an external constant force. In the model, the polymer chain is worm-like and is propelled by active forces along its tangent vectors. Compared with inertial Brownian particles, active polymer chains in steady laminar flows exhibit richer movement patterns due to their specific spatial structures.
View Article and Find Full Text PDFPhysical demixing on large scales of embryonic cell populations is fundamental to metazoan development, but whether a rigidity disparity alone is sufficient to driving large-scale demixing in a binary mixture of cell tissues is still an open question. To answer this question, we study mixing and demixing in a binary mixture of rigidity disparity cell tissues without heterotypic interactions using the Voronoi-based cellular model. Under suitable system parameters, the solid-like cells in the mixture can aggregate into a large cluster and the large-scale demixing occurs, which addresses that a rigidity disparity alone is sufficient to drive large-scale demixing.
View Article and Find Full Text PDFWe establish an explicit data-driven criterion for identifying the solid-liquid transition of two-dimensional self-propelled colloidal particles in the far from equilibrium parameter regime, where the transition points predicted by different conventional empirical criteria for melting and freezing diverge. This is achieved by applying a hybrid machine learning approach that combines unsupervised learning with supervised learning to analyze a huge amount of the system's configurations in the nonequilibrium parameter regime on an equal footing. Furthermore, we establish a generic data-driven evaluation function, according to which the performance of different empirical criteria can be systematically evaluated and improved.
View Article and Find Full Text PDFThe topology of quantum systems has become a topic of great interest since the discovery of topological insulators. However, as a hallmark of the topological insulators, the spin Chern number has not yet been experimentally detected. The challenge to directly measure this topological invariant lies in the fact that this spin Chern number is defined based on artificially constructed wave functions.
View Article and Find Full Text PDFRotation of a gear powered by active particles is numerically investigated in a circular chamber. Due to the nonequilibrium properties of active particles, net gear rotation is achieved in a bath composed of self-propelling particles. Our setup can convert the random motion of active particles into the directional rotation of the ratchet gear.
View Article and Find Full Text PDFWe numerically investigate negative mobility of an inertial Brownian particle moving in a periodic double-well substrate potential in the presence of a time-periodic force and a constant bias. For the deterministic case, we find from the average velocity that the varying shape parameter and driving forces can cause negative mobility, differential negative mobility, and giant positive mobility. We analyze these findings via the bifurcation diagram and maximal Lyapunov exponent and find that certain chaos can give rise to negative mobility.
View Article and Find Full Text PDFWe propose a method for the chiral separation and alignment of active paramagnetic particles in a two-dimensional square box with periodic boundary conditions. In a rotational magnetic field, the dynamic behavior of magnetized particles is strongly determined by the competition between the magnetic interaction and differing chirality. By suitably tailoring the parameters, active particles with different chirality can be aggregated into different clusters and separated.
View Article and Find Full Text PDFTransport and separation of binary mixtures of active and passive particles are investigated in the presence of temperature differences. It is found that temperature differences can strongly affect the rectification and separation of the mixtures. For active particles, there exists an optimal temperature difference at which the rectified efficiency is maximal.
View Article and Find Full Text PDFWe study the cooperation and segregation dynamics of binary mixtures of active and passive particles on a sphere. According to the competition between rotational diffusion and polar alignment, we find three distinct phases: a mixed phase and two different demixed phases. When rotational diffusion dominates the dynamics, the demixing is due to the aggregation of passive particles, where active and passive particles respectively occupy two hemispheres.
View Article and Find Full Text PDFThe naturally persistent flow of hundreds of dust particles is experimentally achieved in a dusty plasma system with the asymmetric sawteeth of gears on the electrode. It is also demonstrated that the direction of the dust particle flow can be controlled by changing the plasma conditions of the gas pressure or the plasma power. Numerical simulations of dust particles with the ion drag inside the asymmetric sawteeth verify the experimental observations of the flow rectification of dust particles.
View Article and Find Full Text PDFEfficient separation of particles has ever-growing importance in both fundamental research and nanotechnological applications. However, such particles usually suffer from some fluctuations from external surroundings and outside intervention from unknown directions. Here, we numerically investigate the transport of Brownian particles in a straight channel with regular arrays of equilateral triangle obstacles.
View Article and Find Full Text PDFRectification of chiral active particles driven by transversal temperature difference is investigated in a two-dimensional periodic channel. Chiral active particles can be rectified by transversal temperature difference. Transport behaviors are qualitatively different for different wall boundary conditions.
View Article and Find Full Text PDFTransport of three types of particles (passive particles, active particles, and polar particles) is investigated in a random obstacle array in the presence of a dc drift force. The obstacles are static or synchronously shake along the given direction. When the obstacles are static, the average velocity is a peaked function of the dc drift force (negative differential mobility) for low particle density, while the average velocity monotonically increases with the dc drift force (positive differential mobility) for high particle density.
View Article and Find Full Text PDFThe transport of active particles in straight channels is numerically investigated. The periodic wedge-shaped barriers can produce the asymmetry of the system and induce the directed transport of the active particles. The direction of the transport is determined by the apex angle of the wedge-shaped barriers.
View Article and Find Full Text PDFTransport of three types of particles (passive particles, active particles without polar interaction, and active particles with polar interaction) is numerically investigated in the presence of traveling obstacle arrays. The transport behaviors are different for different types of particles. For passive particles, there exists an optimal traveling speed (or the translational diffusion) at which the average velocity of particles takes its maximum value.
View Article and Find Full Text PDF