Publications by authors named "Bao-Ping Qi"

Electrochemiluminescence (ECL) imaging, a rapidly evolving technology, has attracted significant attention in the field of cellular imaging. However, its primary limitation lies in its inability to analyze the motion behaviors of individual particles in live cellular environments. In this study, we leveraged the exceptional ECL properties of quantum dots (QDs) and the excellent electrochemical properties of carbon dots (CDs) to develop a high-brightness ECL nanoprobe (CDs-QDs) for real-time ECL imaging between living cells.

View Article and Find Full Text PDF

Carbon nanodots (C-dots) with good biocompatibility have been extensively utilized as co-reactants for electrochemiluminescence (ECL) of the tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)) system. However, the ECL intensity of this system is still relatively low and the mechanism of C-dots as co-reactants remains unclear, which greatly limits its further application in bio-analysis. In this work, we revealed that the carboxyl groups on C-dots are co-reactant sites for Ru(bpy) ECL by systematically investigating the contribution of carboxyl, hydroxyl and carbonyl groups on the surface of C-dots to the ECL intensity.

View Article and Find Full Text PDF

Stem cells possess the capability of self-renewal and multipotency, which endows them with great application potential in wound repair fields. Yet, several problems including immune concerns, ethical debates, and oncogenicity impede the broad and deep advance of stem cell-based products. Recently, owing to their abundant resources, excellent biocompatibility, and ease of being engineered, stem cell-derived exosomes were proved to be promising nanomedicine for curing chronic wounds.

View Article and Find Full Text PDF

A novel electrochemical magnetoimmunosensor for the rapid and sensitive detection of carcinoembryonic antigen (CEA) was fabricated based on a combination of high-efficiency immunomagnetic separation, bifunctional Au-nanoparticle (bi-AuNP) probes, and enzyme catalytic amplification. The reaction carrier magnetic beads (MBs) effectively reduced the toxicity of the complex sample to the working electrode, and the signal carrier bi-AuNP probes loaded a large amount of signal molecules, both of which enhanced the signal-to-noise ratio and further improved the detection sensitivity. A detection limit as low as 0.

View Article and Find Full Text PDF

With unique and tunable photoluminescence (PL) properties, carbon nanodots (CNDs) as a new class of optical tags have been extensively studied. Because of their merits of controllability and sensitivity to the surface of nanomaterials, electrochemical methods have already been adopted to study the intrinsic electronic structures of CNDs. In this review, we mainly deal with the electrochemical researches of CNDs, including preparation, PL mechanism, and biosensing.

View Article and Find Full Text PDF

An efficient edge-functionalization strategy with high specificity was employed to study the effects of conjugated structures on photoluminescence (PL) properties of graphene quantum dots (GQDs). Both the experimental results and density functional theory (DFT)-based calculations suggested the mechanism for conjugated structures in GQDs to tune the band gap of GQDs.

View Article and Find Full Text PDF

The near-infrared (NIR) electrogenerated chemiluminescence (ECL) of water-dispersed Ag(2)Se quantum dots (QDs) with ultrasmall size was presented for the first time. The Ag(2)Se QDs have shown a strong and efficient cathodic ECL signal with K(2)S(2)O(8) as coreactant on the glassy carbon electrode (GCE) in aqueous solution. The ECL spectrum exhibited a peak at 695 nm, consistent with the peak in photoluminescence (PL) spectrum of the Ag(2)Se QDs solution, indicating that the Ag(2)Se QDs had no deep surface traps.

View Article and Find Full Text PDF

In the title mol-ecule, C(17)H(16)N(4)O, the triazole ring makes dihedral angles of 29.00 (1) and 77.74 (1)°, respectively, with the phenyl and benzene rings.

View Article and Find Full Text PDF