Publications by authors named "Bao-Liang Zhou"

Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a "genome shock", leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton ( and , AADD) and its extant AA () and DD () progenitors.

View Article and Find Full Text PDF

Cytogenetics was established based on the "Chromosome theory of inheritance", proposed by Boveri and Sutton and evidenced by Morgan's lab in early stage of the 20 centrary. With rapid development of related research areas, especially molecular genetics, cytogenetics developed from traditional into a new era, molecular cytogenetics in late 1960s. Featured by an established technique named DNA in situ hybridization (ISH), molecular cytogenetics has been applied in various research areas.

View Article and Find Full Text PDF

Fiber quality improvement is a driving force for further cotton domestication and breeding. Here, QTLs for fiber quality were mapped in 115 introgression lines (ILs) first developed from two intraspecific populations of cultivated and feral cotton landraces. A total of 60 QTLs were found, which explained 2.

View Article and Find Full Text PDF

Cotton is the most important textile crop in the world due to its cellulose-enriched fibers. Sucrose synthase genes (Sus) play pivotal roles in cotton fiber and seed development. To mine and pyramid more favorable alleles for cotton molecular breeding, single nucleotide polymorphisms (SNPs) of GhSus family genes were investigated across 277 upland cotton accessions by EcoTILLING.

View Article and Find Full Text PDF

Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11-20 Mya, which likely contributed to genomic divergences.

View Article and Find Full Text PDF

Cotton fibres are unusually long, single-celled epidermal seed trichomes and a model for plant cell growth, but little is known about the regulation of fibre cell elongation. Here we report that a homeodomain-leucine zipper (HD-ZIP) transcription factor, GhHOX3, controls cotton fibre elongation. GhHOX3 genes are localized to the 12th homoeologous chromosome set of allotetraploid cotton cultivars, associated with quantitative trait loci (QTLs) for fibre length.

View Article and Find Full Text PDF

This study introduces the construction of the first intraspecific genetic linkage map of the A-genome diploid cotton with newly developed simple sequence repeat (SSR) markers using 189 F(2) plants derived from the cross of two Asiatic cotton cultivars (Gossypium arboreum L.) Jianglingzhongmian x Zhejiangxiaoshanlüshu. Polymorphisms between the two parents were detected using 6 092 pairs of SSR primers.

View Article and Find Full Text PDF

To identify alien chromosomes in recipient progenies and to analyze genome components in polyploidy, a genomic in situ hybridization (GISH) technique that is suitable for cotton was developed using increased stringency conditions. The increased stringency conditions were a combination of the four factors in the following optimized state: 100:1 ratio of blocking DNA to probe, 60% formamide wash solution, 43 degrees C temperature wash and a 13 min wash. Under these specific conditions using gDNA from Gossypium sturtianum (C(1)C(1)) as a probe, strong hybridization signals were only observed on chromosomes from the C(1) genome in somatic cells of the hybrid F(1) (G.

View Article and Find Full Text PDF