Publications by authors named "Bao-Li Chang"

Polygenic risk scores (PRSs) calculated from genome-wide association studies (GWASs) of non-melanoma skin cancer (NMSC) in a general, non-transplant setting have recently been shown to predict risk of and time to post-renal transplant skin cancer. In this study, we set out to test these findings in a cohort of heart, lung, and liver transplant patients to see whether these scores could be applied across different organ transplant types. Using the PRS from Stapleton et al (2018), PRS was calculated for each sample across a European ancestry heart, lung, and liver transplant cohorts (n = 523) and tested as predictor of time to NMSC post-transplant.

View Article and Find Full Text PDF

Unlabelled: The ability to noninvasively diagnose acute cellular rejection (ACR) with high specificity and sensitivity would significantly advance personalized liver transplant recipient care and management of immunosuppression. We performed microRNA (miRNA) profiling in 318 serum samples from 69 liver transplant recipients enrolled in the Immune Tolerance Network immunosuppression withdrawal (ITN030ST) and Clinical Trials in Organ Transplantation (CTOT-03) studies. We quantified serum miRNA at clinically indicated and/or protocol biopsy events (n = 130).

View Article and Find Full Text PDF

Objective: To validate six previously identified markers among men at increased risk of prostate cancer (African-American men and those with a family history of prostate cancer) enrolled in the Prostate Cancer Risk Assessment Program (PRAP), a prostate cancer screening study.

Patients And Methods: Eligibility criteria for PRAP include age 35-69 years with a family history of prostate cancer, African-American ethnicity regardless of family history, and known BRCA gene mutations. The genome-wide association study markers assessed included rs2736098 (5p15.

View Article and Find Full Text PDF

Background: Early-onset baldness has been linked to prostate cancer; however, little is known about this relationship in African-Americans who are at elevated prostate cancer risk.

Methods: We recruited 219 African-American controls and 318 African-American prostate cancer cases. We determined age-stratified associations of baldness with prostate cancer occurrence and severity defined by high stage (T3/T4) or high grade (Gleason 7+.

View Article and Find Full Text PDF

Prostate cancer (CaP) is the leading cancer among men of African descent in the USA, Caribbean, and Sub-Saharan Africa (SSA). The estimated number of CaP deaths in SSA during 2008 was more than five times that among African Americans and is expected to double in Africa by 2030. We summarize publicly available CaP data and collected data from the men of African descent and Carcinoma of the Prostate (MADCaP) Consortium and the African Caribbean Cancer Consortium (AC3) to evaluate CaP incidence and mortality in men of African descent worldwide.

View Article and Find Full Text PDF

As genome-wide association studies expand beyond populations of European ancestry, the role of admixture will become increasingly important in the continued discovery and fine-mapping of variation influencing complex traits. Although admixture is commonly viewed as a confounding influence in association studies, approaches such as admixture mapping have demonstrated its ability to highlight disease susceptibility regions of the genome. In this study, we illustrate a powerful two-stage testing strategy designed to uncover trait-associated single nucleotide polymorphisms in the presence of ancestral allele frequency differentiation.

View Article and Find Full Text PDF

In search of common risk alleles for prostate cancer that could contribute to high rates of the disease in men of African ancestry, we conducted a genome-wide association study, with 1,047,986 SNP markers examined in 3,425 African-Americans with prostate cancer (cases) and 3,290 African-American male controls. We followed up the most significant 17 new associations from stage 1 in 1,844 cases and 3,269 controls of African ancestry. We identified a new risk variant on chromosome 17q21 (rs7210100, odds ratio per allele = 1.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have identified numerous prostate cancer susceptibility alleles, but these loci have been identified primarily in men of European descent. There is limited information about the role of these loci in men of African descent.

Methods: We identified 7,788 prostate cancer cases and controls with genotype data for 47 GWAS-identified loci.

View Article and Find Full Text PDF

Background: Disparities in cancer defined by race, age, or gender are well established. However, demographic metrics are surrogates for the complex contributions of genotypes, exposures, health care, socioeconomic and sociocultural environment, and many other factors. Macroenvironmental factors represent novel surrogates for exposures, lifestyle, and other factors that are difficult to measure but might influence cancer outcomes.

View Article and Find Full Text PDF

Two single nucleotide polymorphisms (SNP; rs5945572 and rs5945619) at Xp11 were recently implicated in two genome-wide association studies of prostate cancer. Using a family-based association test for these two SNPs in 168 families with prostate cancer, we showed in this study that the risk alleles of the two reported SNPs were overtransmitted to the affected offspring (P= 0.009 for rs5945372 and P = 0.

View Article and Find Full Text PDF

Four genome-wide association studies, all in populations of European descent, have identified 20 independent single nucleotide polymorphisms (SNP) in 20 regions that are associated with prostate cancer risk. We evaluated these 20 SNPs in a combined African American (AA) study, with 868 prostate cancer patients and 878 control subjects. For 17 of these 20 SNPs, implicated risk-associated alleles were found to be more common in these AA cases than controls, significantly more than expected under the null hypothesis (P = 0.

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNP) at 11q13 were recently implicated in prostate cancer risk by two genome-wide association studies and were consistently replicated in multiple study populations. To explore prostate cancer association in the regions flanking these SNPs, we genotyped 31 tagging SNPs in a approximately 110 kb region at 11q13 in a Swedish case-control study (Cancer of the Prostate in Sweden), including 2,899 cases and 1,722 controls. We found evidence of prostate cancer association for the previously implicated SNPs including rs10896449, which we termed locus 1.

View Article and Find Full Text PDF

A two-stage genome-wide association study (GWAS) of the Cancer Genetic Markers of Susceptibility (CGEMS) initiative identified single nucleotide polymorphisms (SNP) in 150 regions across the genome that may be associated with prostate cancer (PCa) risk. We filtered these results to identify 43 independent SNPs where the frequency of the risk allele was consistently higher in cases than in controls in each of the five CGEMS study populations. Genotype information for 22 of these 43 SNPs was obtained either directly by genotyping or indirectly by imputation in our PCa GWAS of 500 cases and 500 controls selected from a population-based case-control study in Sweden [Cancer of the Prostate in Sweden (CAPS)].

View Article and Find Full Text PDF

We searched for deletions in the germ-line genome among 498 aggressive prostate cancer cases and 494 controls from a population-based study in Sweden [CAncer of the Prostate in Sweden (CAPS)] using Affymetrix SNP arrays. By comparing allele intensities of approximately 500,000 SNP probes across the genome, a germ-line deletion at 2p24.3 was observed to be significantly more common in cases (12.

View Article and Find Full Text PDF

Purpose: Although prostate-specific antigen (PSA) is the best biomarker for predicting prostate cancer, its predictive performance needs to be improved. Results from the Prostate Cancer Prevention Trial revealed the overall performance measured by the areas under curve of the receiver operating characteristic at 0.68.

View Article and Find Full Text PDF

A single nucleotide polymorphism (SNP) at 10q11 (rs10993994) in the 5' region of the MSMB gene was recently implicated in prostate cancer risk in two genome-wide association studies. To identify possible causal variants in the region, we genotyped 16 tagging SNPs and imputed 29 additional SNPs in approximately 65 kb genomic region at 10q11 in a Swedish population-based case-control study (CAncer of the Prostate in Sweden), including 2899 cases and 1722 controls. We found evidence for two independent loci, separated by a recombination hotspot, associated with prostate cancer risk.

View Article and Find Full Text PDF

To search for genetic variants that are associated with prostate cancer risk in the genome, we combined the data from our genome-wide association study (GWAS) in a population-based case-control study in Sweden with publicly available GWAS data from the Cancer Genetic Markers of Susceptibility (CGEMS) study. We limited the cases to those with aggressive disease in an attempt to identify risk variants that are associated with this most clinically relevant form of the disease. Among the most likely candidate single nucleotide polymorphisms (SNP) identified from the two GWAS, we sequentially confirmed one SNP at 22q13 in two independent study populations: the remaining subjects in Cancer of the Prostate in Sweden and a hospital-based case-control study at Johns Hopkins Hospital.

View Article and Find Full Text PDF

Background: Prostate specific antigen (PSA) is widely used for prostate cancer screening but its levels are influenced by many non cancer-related factors. The goal of the study is to estimate the effect of genetic variants on PSA levels.

Methods: We evaluated the association of SNPs that were reported to be associated with prostate cancer risk in recent genome-wide association studies with plasma PSA levels in a Swedish study population, including 1,722 control subjects without a diagnosis of prostate cancer.

View Article and Find Full Text PDF

Background: TNFRSF10C, is located on 8p21.3, one of the most frequently deleted loci in the genome of prostate cancer (PCa). Hypermethylation of TNFRSF10C promoter CpG island (CGI) had been reported in many tumors including PCa.

View Article and Find Full Text PDF

Lipoprotein lipase (LPL) is in chromosome 8p22, site of one of the most common somatic deletions in prostate tumors. Additionally, a CpG island (CGI) was identified in the LPL promoter region. To test the hypothesis that LPL is a tumor suppressor gene, which is inactivated by somatic deletion and hypermethylation in prostate cancer, we evaluated somatic DNA deletion and methylation status at LPL in 56 pairs of DNA samples isolated from prostate cancer tissues and matching normal controls and 11 prostate cell lines.

View Article and Find Full Text PDF

Over the past 2 decades, DNA samples from thousands of families have been collected and genotyped for linkage studies of common complex diseases, such as type 2 diabetes, asthma, and prostate cancer. Unfortunately, little success has been achieved in identifying genetic susceptibility risk factors through these considerable efforts. However, significant success in identifying common disease risk-associated variants has been recently achieved from genome-wide association studies using unrelated case-control samples.

View Article and Find Full Text PDF

We carried out a fine-mapping study in the HNF1B gene at 17q12 in two study populations and identified a second locus associated with prostate cancer risk, approximately 26 kb centromeric to the first known locus (rs4430796); these loci are separated by a recombination hot spot. We confirmed the association with a SNP in the second locus (rs11649743) in five additional populations, with P = 1.7 x 10(-9) for an allelic test of the seven studies combined.

View Article and Find Full Text PDF

Prostate cancer cell lines provide ideal in vitro systems for the identification and analysis of prostate tumor suppressors and oncogenes. A detailed characterization of the architecture of prostate cancer cell line genomes would facilitate the study of precise roles of various genes in prostate tumorigenesis in general. To contribute to such a characterization, we used the GeneChip 500K single nucleotide polymorphic (SNP) array for analysis of genotypes and relative DNA copy number changes across the genome of 11 cell lines derived from both normal and cancerous prostate tissues.

View Article and Find Full Text PDF

Although it is well known that multiple genes may influence prostate cancer risk, most current efforts at identifying prostate cancer risk variants rely on single-gene approaches. In previous work using mostly single-gene approaches, we observed significant associations (P < 0.05) for 6 of 46 polymorphisms in five genes in a Swedish prostate cancer case-control study population.

View Article and Find Full Text PDF

Background: A strong cumulative effect of five genetic variants and family history on prostate cancer risk was recently reported in a Swedish population (CAPS). We carried out this study to confirm the finding in two U.S.

View Article and Find Full Text PDF