Background: Secretory Carrier Membrane Proteins 3 (SCAMP3) is a transmembrane protein that affects intracellular trafficking, protein sorting and vesicle formation. Overexpression of SCAMP3 correlates with poorly differentiated hepatocellular carcinoma (HCC). However, the expression and corresponding gene regulation of SCAMP3 in HCC remain unclear.
View Article and Find Full Text PDFInt J Nanomedicine
December 2010
Development of efficacious therapeutic strategies to prevent and inhibit the occurrences of restenosis after percutaneous transluminal coronary angioplasty is critical for the treatment of cardiovascular diseases. In this study, the feasibility and efficiency of stents coated with dodecylated chitosan-plasmid DNA nanoparticles (DCDNPs) were evaluated as scaffolds for localized and prolonged delivery of reporter genes into the diseased blood vessel wall. Dodecylated chitosan-plasmid DNA complexes formed stable positive charged nanospheres with mean diameter of approximately 90-180 nm and zeta potential of +28 ± 3 mV.
View Article and Find Full Text PDFThe objective of this study was to prepare a novel mifepristone-loaded PCL/Pluronic F68 implant to achieve long-term treatment of endometriosis. PCL/Pluronic F68 compound (90/10, w/w) with viscosity average molecular weight of 65,000 was successfully synthesized. The end-capped Pluronic F68 was incorporated in PCL matrixes as molecular dispersion without forming a copolymer.
View Article and Find Full Text PDFMultidrug resistance (MDR) of tumor cells is a major obstacle to the success of cancer chemotherapy. Poloxamers have been used in cancer therapy to overcome MDR. The objective of this research is to test the feasibility of paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 (PCL/Poloxamer 188) nanoparticles to overcome MDR in a paclitaxel-resistant human breast cancer cell line.
View Article and Find Full Text PDFBiomed Mater
February 2009
The plasmid DNA (pDNA) loading by cationic polymers or/and cationic lipids is essential for gene therapy, especially for metal implants such as stents and artificial joints. Polycations can condense with pDNA by self-assembly, forming polyplexes spontaneously as a result of electrostatic interactions to carry and transfer pDNA in vivo. Cationic polymers, such as chitosan, can also protect pDNA from degradation by DNase.
View Article and Find Full Text PDF